Agnostic Membership Query Learning with Nontrivial Savings: New Results,
Techniques
- URL: http://arxiv.org/abs/2311.06690v1
- Date: Sat, 11 Nov 2023 23:46:48 GMT
- Title: Agnostic Membership Query Learning with Nontrivial Savings: New Results,
Techniques
- Authors: Ari Karchmer
- Abstract summary: We consider learning with membership queries for classes at the frontier of learning.
This approach is inspired by and continues the study of linearlearning with nontrivial savings''
We establish agnostic learning algorithms for circuits consisting of a sublinear number of gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: (Abridged) Designing computationally efficient algorithms in the agnostic
learning model (Haussler, 1992; Kearns et al., 1994) is notoriously difficult.
In this work, we consider agnostic learning with membership queries for
touchstone classes at the frontier of agnostic learning, with a focus on how
much computation can be saved over the trivial runtime of 2^n$. This approach
is inspired by and continues the study of ``learning with nontrivial savings''
(Servedio and Tan, 2017). To this end, we establish multiple agnostic learning
algorithms, highlighted by:
1. An agnostic learning algorithm for circuits consisting of a sublinear
number of gates, which can each be any function computable by a sublogarithmic
degree k polynomial threshold function (the depth of the circuit is bounded
only by size). This algorithm runs in time 2^{n -s(n)} for s(n) \approx
n/(k+1), and learns over the uniform distribution over unlabelled examples on
\{0,1\}^n.
2. An agnostic learning algorithm for circuits consisting of a sublinear
number of gates, where each can be any function computable by a \sym^+ circuit
of subexponential size and sublogarithmic degree k. This algorithm runs in time
2^{n-s(n)} for s(n) \approx n/(k+1), and learns over distributions of
unlabelled examples that are products of k+1 arbitrary and unknown
distributions, each over \{0,1\}^{n/(k+1)} (assume without loss of generality
that k+1 divides n).
Related papers
- Fast quantum integer multiplication with zero ancillas [0.5755004576310334]
We introduce a new paradigm for sub-quadratic-time quantum multiplication with zero ancilla qubits.
The only qubits involved are the input and output registers themselves.
Our algorithm has the potential to outperform previous problem sizes relevant in practice.
arXiv Detail & Related papers (2024-03-26T18:00:03Z) - Agnostically Learning Multi-index Models with Queries [54.290489524576756]
We study the power of query access for the task of agnostic learning under the Gaussian distribution.
We show that query access gives significant runtime improvements over random examples for agnostically learning MIMs.
arXiv Detail & Related papers (2023-12-27T15:50:47Z) - A Competitive Algorithm for Agnostic Active Learning [5.4579367210379335]
Most popular algorithms for active learning express their performance in terms of a parameter called the disagreement coefficient.
We get an algorithm that is competitive with the optimal algorithm for any binary hypothesis class $H$ and distribution $D_X$ over $X$.
It is NP-hard to do better than our algorithm's $O(log |H|)$ overhead in general.
arXiv Detail & Related papers (2023-10-28T19:01:16Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Structure learning in polynomial time: Greedy algorithms, Bregman
information, and exponential families [12.936601424755944]
We study a general greedy score-based algorithm for learning DAGs.
We show how recent algorithm-time algorithms for learning DAG models are a special case of this algorithm.
This observation suggests new score functions and optimality conditions based on the duality between Bregman divergences and exponential families.
arXiv Detail & Related papers (2021-10-10T06:37:51Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
We show that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
For loss factors, we prove that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
arXiv Detail & Related papers (2020-09-18T02:18:44Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.