Attention for Causal Relationship Discovery from Biological Neural
Dynamics
- URL: http://arxiv.org/abs/2311.06928v3
- Date: Thu, 23 Nov 2023 08:40:20 GMT
- Title: Attention for Causal Relationship Discovery from Biological Neural
Dynamics
- Authors: Ziyu Lu, Anika Tabassum, Shruti Kulkarni, Lu Mi, J. Nathan Kutz, Eric
Shea-Brown, Seung-Hwan Lim
- Abstract summary: This paper explores the potential of the transformer models for learning Granger causality in networks with complex nonlinear dynamics at every node.
We show that the cross attention module effectively captures the causal relationship among neurons, with an accuracy equal or superior to that for the most popular Granger causality analysis method.
- Score: 9.097847269529202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the potential of the transformer models for learning
Granger causality in networks with complex nonlinear dynamics at every node, as
in neurobiological and biophysical networks. Our study primarily focuses on a
proof-of-concept investigation based on simulated neural dynamics, for which
the ground-truth causality is known through the underlying connectivity matrix.
For transformer models trained to forecast neuronal population dynamics, we
show that the cross attention module effectively captures the causal
relationship among neurons, with an accuracy equal or superior to that for the
most popular Granger causality analysis method. While we acknowledge that
real-world neurobiology data will bring further challenges, including dynamic
connectivity and unobserved variability, this research offers an encouraging
preliminary glimpse into the utility of the transformer model for causal
representation learning in neuroscience.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Explosive neural networks via higher-order interactions in curved statistical manifolds [43.496401697112695]
We introduce curved neural networks as a class of prototypical models for studying higher-order phenomena.
We show that these curved neural networks implement a self-regulating process that can accelerate memory retrieval.
arXiv Detail & Related papers (2024-08-05T09:10:29Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
We show the challenges faced by backpropagation-based methods in optimizing Spiking Neural Networks (SNNs) and achieve more robust optimization of heterogeneous neurons in random networks using an Evolutionary Strategy (ES)
We find that membrane time constants play a crucial role in neural heterogeneity, and their distribution is similar to that observed in biological experiments.
arXiv Detail & Related papers (2023-05-19T07:32:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks [23.95944607153291]
A physics-informed neural network (PINN) embedded with the susceptible-infected-removed (SIR) model is devised to understand the temporal evolution dynamics of infectious diseases.
The method is applied to COVID-19 data reported for Germany and shows that it can accurately identify and predict virus spread trends.
arXiv Detail & Related papers (2023-02-17T10:36:58Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
Liquid state machine (LSM) tunes internal weights without backpropagation of gradients.
Recent findings suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics.
We propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics.
arXiv Detail & Related papers (2021-10-26T23:04:40Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.