論文の概要: CD-COCO: A Versatile Complex Distorted COCO Database for
Scene-Context-Aware Computer Vision
- arxiv url: http://arxiv.org/abs/2311.06976v1
- Date: Sun, 12 Nov 2023 22:28:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 16:04:36.949882
- Title: CD-COCO: A Versatile Complex Distorted COCO Database for
Scene-Context-Aware Computer Vision
- Title(参考訳): CD-COCO:シーン認識型コンピュータビジョンのための多機能複合歪みCOCOデータベース
- Authors: Ayman Beghdadi, Azeddine Beghdadi, Malik Mallem, Lotfi Beji, Faouzi
Alaya Cheikh
- Abstract要約: 画像取得条件は、ハイレベル画像処理の性能に大きな影響を及ぼす。
我々はMS-COCOデータベースから派生した汎用データベースを構築した。
シーンコンテキストを考慮した新たな局所歪みが発生する。
- 参考スコア(独自算出の注目度): 6.48583124646155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of deep learning methods applied to vision has enabled
their increasing integration into real-world applications to perform complex
Computer Vision (CV) tasks. However, image acquisition conditions have a major
impact on the performance of high-level image processing. A possible solution
to overcome these limitations is to artificially augment the training databases
or to design deep learning models that are robust to signal distortions. We opt
here for the first solution by enriching the database with complex and
realistic distortions which were ignored until now in the existing databases.
To this end, we built a new versatile database derived from the well-known
MS-COCO database to which we applied local and global photo-realistic
distortions. These new local distortions are generated by considering the scene
context of the images that guarantees a high level of photo-realism.
Distortions are generated by exploiting the depth information of the objects in
the scene as well as their semantics. This guarantees a high level of
photo-realism and allows to explore real scenarios ignored in conventional
databases dedicated to various CV applications. Our versatile database offers
an efficient solution to improve the robustness of various CV tasks such as
Object Detection (OD), scene segmentation, and distortion-type classification
methods. The image database, scene classification index, and distortion
generation codes are publicly available
\footnote{\url{https://github.com/Aymanbegh/CD-COCO}}
- Abstract(参考訳): 近年、視覚に応用されるディープラーニング手法の開発により、複雑なコンピュータビジョン(cv)タスクを実行する実世界アプリケーションへの統合が増加している。
しかし、画像取得条件は、ハイレベル画像処理の性能に大きな影響を及ぼす。
これらの制限を克服するための可能な解決策は、トレーニングデータベースを人工的に拡張するか、あるいは信号歪みに頑健なディープラーニングモデルを設計することだ。
ここでは、既存のデータベースでこれまで無視されていた複雑で現実的な歪みでデータベースを豊かにすることで、最初のソリューションを選択します。
そこで我々は,MS-COCOデータベースをベースとした多目的データベースを構築し,局所的およびグローバルなフォトリアリスティック歪みを適用した。
これらの新しい局所的歪みは、高レベルのフォトリアリズムを保証する画像のシーンコンテキストを考慮して生成される。
歪みは、シーン内のオブジェクトの深さ情報とそれらのセマンティクスを利用して生成される。
これにより、高レベルのフォトリアリズムが保証され、様々なCVアプリケーション専用の従来のデータベースで無視される実際のシナリオを探索することができる。
汎用データベースは,オブジェクト検出(od)やシーンセグメンテーション,歪み型分類手法など,cvタスクのロバスト性を改善するための効率的なソリューションを提供する。
画像データベース、シーン分類インデックス、歪み生成コードは、github.com/aymanbegh/cd-coco}} で公開されている。
関連論文リスト
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - An Ensemble Model for Distorted Images in Real Scenarios [0.0]
本稿では,オブジェクト検出器YOLOv7を用いてCDCOCOデータセットから歪み画像を検出する。
慎重に設計した最適化により,CDCOCOテストセット上での優れた性能を実現する。
我々のデノナイジング検出モデルは、歪んだ画像をデノナイズし、修復することができるため、様々な現実のシナリオや環境において有用である。
論文 参考訳(メタデータ) (2023-09-26T15:12:55Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - SIDAR: Synthetic Image Dataset for Alignment & Restoration [2.9649783577150837]
エンドツーエンドのディープラーニングモデルのトレーニングと評価に十分なデータを提供するデータセットが不足している。
提案したデータ拡張は,3次元レンダリングを用いてデータの不足を克服するのに役立つ。
得られたデータセットは、画像アライメントとアーティファクト削除を含むさまざまなタスクのトレーニングと評価セットとして機能する。
論文 参考訳(メタデータ) (2023-05-19T23:32:06Z) - Benchmarking performance of object detection under image distortions in
an uncontrolled environment [0.483420384410068]
オブジェクト検出アルゴリズムの堅牢性は、現実世界のアプリケーションにおいて顕著な役割を果たす。
物体検出法の性能は, 被写体内歪みに悩まされていることが証明されている。
本稿では,最先端のオブジェクト検出手法の性能評価フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-28T09:06:52Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
本稿では,非局所変分オートエンコーダ(textttNLVAE)という画像固有解を提案する。
textttNLVAEは,非局所領域からの非絡み合った情報を用いて高解像度画像を再構成する自己教師型戦略として導入された。
7つのベンチマークデータセットによる実験結果から,textttNLVAEモデルの有効性が示された。
論文 参考訳(メタデータ) (2022-04-02T18:43:55Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
本稿では,ターゲットドメインからの実際の画像を必要としない新しいデータベース生成手法と,(ii)交通標識のテンプレートを提案する。
この方法は、実際のデータでトレーニングを克服することではなく、実際のデータが利用できない場合に互換性のある代替手段になることを目的としている。
大規模なデータセットでは、完全に合成されたデータセットによるトレーニングは、実際のデータセットとトレーニングのパフォーマンスにほぼ一致する。
論文 参考訳(メタデータ) (2020-07-30T21:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。