Quantum and classical query complexities of functions of matrices
- URL: http://arxiv.org/abs/2311.06999v2
- Date: Wed, 21 Feb 2024 04:44:44 GMT
- Title: Quantum and classical query complexities of functions of matrices
- Authors: Ashley Montanaro and Changpeng Shao
- Abstract summary: We show that for any continuous function $f(x):[-1,1]rightarrow [-1,1]$, the quantum query complexity of computing $brai f(A) ketjpm varepsilon/4$ is lower bounded by $Omega(widetildedeg_varepsilon(f))$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Let $A$ be an $s$-sparse Hermitian matrix, $f(x)$ be a univariate function,
and $i, j$ be two indices. In this work, we investigate the query complexity of
approximating $\bra{i} f(A) \ket{j}$. We show that for any continuous function
$f(x):[-1,1]\rightarrow [-1,1]$, the quantum query complexity of computing
$\bra{i} f(A) \ket{j}\pm \varepsilon/4$ is lower bounded by
$\Omega(\widetilde{\deg}_\varepsilon(f))$. The upper bound is at most quadratic
in $\widetilde{\deg}_\varepsilon(f)$ and is linear in
$\widetilde{\deg}_\varepsilon(f)$ under certain mild assumptions on $A$. Here
the approximate degree $\widetilde{\deg}_\varepsilon(f)$ is the minimum degree
such that there is a polynomial of that degree approximating $f$ up to additive
error $\varepsilon$ in the interval $[-1,1]$. We also show that the classical
query complexity is lower bounded by
$\widetilde{\Omega}((s/2)^{(\widetilde{\deg}_{2\varepsilon}(f)-1)/6})$ for any
$s\geq 4$. Our results show that the quantum and classical separation is
exponential for any continuous function of sparse Hermitian matrices, and also
imply the optimality of implementing smooth functions of sparse Hermitian
matrices by quantum singular value transformation. The main techniques we used
are the dual polynomial method for functions over the reals, linear
semi-infinite programming, and tridiagonal matrices.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Hardness of Low Rank Approximation of Entrywise Transformed Matrix
Products [9.661328973620531]
Inspired by fast algorithms in natural language processing, we study low rank approximation in the entrywise transformed setting.
We give novel reductions from the Strong Exponential Time Hypothesis (SETH) that rely on lower bounding the leverage scores of flat sparse vectors.
Since our low rank algorithms rely on matrix-vectors, our lower bounds extend to show that computing $f(UV)W$, for even a small matrix $W$, requires $Omega(n2-o(1))$ time.
arXiv Detail & Related papers (2023-11-03T14:56:24Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Krylov Methods are (nearly) Optimal for Low-Rank Approximation [8.017116107657206]
We show that any algorithm requires $Omegaleft(log(n)/varepsilon1/2right)$ matrix-vector products, exactly matching the upper bound obtained by Krylov methods.
Our lower bound addresses Open Question 1WooWoo14, providing evidence for the lack of progress on algorithms for Spectral LRA.
arXiv Detail & Related papers (2023-04-06T16:15:19Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.