Quantum and classical query complexities of functions of matrices
- URL: http://arxiv.org/abs/2311.06999v3
- Date: Fri, 17 Jan 2025 01:39:23 GMT
- Title: Quantum and classical query complexities of functions of matrices
- Authors: Ashley Montanaro, Changpeng Shao,
- Abstract summary: We show that for any continuous function $f(x):[-1,1]rightarrow [-1,1]$, the quantum query complexity of computing $brai f(A) ketjpm varepsilon/4$ is lower bounded by $Omega(widetildedeg_varepsilon(f))$.
- Score: 0.0
- License:
- Abstract: Let $A$ be an $s$-sparse Hermitian matrix, $f(x)$ be a univariate function, and $i, j$ be two indices. In this work, we investigate the query complexity of approximating $\bra{i} f(A) \ket{j}$. We show that for any continuous function $f(x):[-1,1]\rightarrow [-1,1]$, the quantum query complexity of computing $\bra{i} f(A) \ket{j}\pm \varepsilon/4$ is lower bounded by $\Omega(\widetilde{\deg}_\varepsilon(f))$. The upper bound is at most quadratic in $\widetilde{\deg}_\varepsilon(f)$ and is linear in $\widetilde{\deg}_\varepsilon(f)$ under certain mild assumptions on $A$. Here the approximate degree $\widetilde{\deg}_\varepsilon(f)$ is the minimum degree such that there is a polynomial of that degree approximating $f$ up to additive error $\varepsilon$ in the interval $[-1,1]$. We also show that the classical query complexity is lower bounded by $\widetilde{\Omega}((s/2)^{(\widetilde{\deg}_{2\varepsilon}(f)-1)/6})$ for any $s\geq 4$. Our results show that the quantum and classical separation is exponential for any continuous function of sparse Hermitian matrices, and also imply the optimality of implementing smooth functions of sparse Hermitian matrices by quantum singular value transformation. As another hardness result, we show that entry estimation problem (i.e., deciding $\bra{i} f(A) \ket{j}\geq \varepsilon$ or $\bra{i} f(A) \ket{j}\leq -\varepsilon$) is BQP-complete for any continuous function $f(x)$ as long as its approximate degree is large enough. The main techniques we used are the dual polynomial method for functions over the reals, linear semi-infinite programming, and tridiagonal matrices.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Quantum Algorithms and Lower Bounds for Finite-Sum Optimization [22.076317220348145]
We give a quantum algorithm with complexity $tildeObig(n+sqrtd+sqrtell/mubig)$, improving the classical tight bound $tildeThetabig(n+sqrtnell/mubig)$.
We also prove a quantum lower bound $tildeOmega(n+n3/4(ell/mu)1/4)$ when $d$ is large enough.
arXiv Detail & Related papers (2024-06-05T07:13:52Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - Sharper bounds for online learning of smooth functions of a single
variable [0.0]
We show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
We also show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
arXiv Detail & Related papers (2021-05-30T23:06:21Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.