WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
- URL: http://arxiv.org/abs/2311.07138v2
- Date: Mon, 1 Jul 2024 03:17:42 GMT
- Title: WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
- Authors: Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei Hou, Juanzi Li,
- Abstract summary: WaterBench is the first comprehensive benchmark for watermarks in large language models (LLMs)
We introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors.
We evaluate $4$ open-source watermarks on $2$ LLMs under $2$ watermarking strengths and observe the common struggles for current methods on maintaining the generation quality.
- Score: 48.19623266082828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method's hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering $9$ tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate $4$ open-source watermarks on $2$ LLMs under $2$ watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
Related papers
- De-mark: Watermark Removal in Large Language Models [59.00698153097887]
We present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively.
Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark.
arXiv Detail & Related papers (2024-10-17T17:42:10Z) - A Watermark for Low-entropy and Unbiased Generation in Large Language Models [6.505831742654826]
This study proposes the Sampling One Then Accepting (STA-1) method, a watermark that can address all of these issues.
We show that in low-entropy scenarios, unbiased watermarks face a tradeoff between watermark strength and the risk of unsatisfactory outputs.
Experimental results on both low-entropy and high-entropy datasets demonstrate that STA-1 achieves text quality and watermark strength comparable to existing unbiased watermarks.
arXiv Detail & Related papers (2024-05-23T14:17:29Z) - New Evaluation Metrics Capture Quality Degradation due to LLM
Watermarking [28.53032132891346]
We introduce two new easy-to-use methods for evaluating watermarking algorithms for large-language models (LLMs)
Our experiments, conducted across various datasets, reveal that current watermarking methods are detectable by even simple classifiers.
Our findings underscore the trade-off between watermark robustness and text quality and highlight the importance of having more informative metrics to assess watermarking quality.
arXiv Detail & Related papers (2023-12-04T22:56:31Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - Three Bricks to Consolidate Watermarks for Large Language Models [13.559357913735122]
This research consolidates watermarks for large language models based on three theoretical and empirical considerations.
First, we introduce new statistical tests that offer robust theoretical guarantees which remain valid even at low false-positive rates.
Second, we compare the effectiveness of watermarks using classical benchmarks in the field of natural language processing, gaining insights into their real-world applicability.
arXiv Detail & Related papers (2023-07-26T17:56:36Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark.
We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing.
arXiv Detail & Related papers (2023-06-30T07:24:32Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.