Watermark Smoothing Attacks against Language Models
- URL: http://arxiv.org/abs/2407.14206v2
- Date: Wed, 05 Feb 2025 09:13:15 GMT
- Title: Watermark Smoothing Attacks against Language Models
- Authors: Hongyan Chang, Hamed Hassani, Reza Shokri,
- Abstract summary: We introduce the Smoothing Attack, a novel watermark removal method.<n>We validate our attack on open-source models ranging from $1.3$B to $30$B parameters.
- Score: 40.02225709485305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking is a key technique for detecting AI-generated text. In this work, we study its vulnerabilities and introduce the Smoothing Attack, a novel watermark removal method. By leveraging the relationship between the model's confidence and watermark detectability, our attack selectively smoothes the watermarked content, erasing watermark traces while preserving text quality. We validate our attack on open-source models ranging from $1.3$B to $30$B parameters on $10$ different watermarks, demonstrating its effectiveness. Our findings expose critical weaknesses in existing watermarking schemes and highlight the need for stronger defenses.
Related papers
- Let Watermarks Speak: A Robust and Unforgeable Watermark for Language Models [0.0]
We propose an undetectable, robust, single-bit watermarking scheme.
It has a comparable robustness to the most advanced zero-bit watermarking schemes.
arXiv Detail & Related papers (2024-12-27T11:58:05Z) - Revisiting the Robustness of Watermarking to Paraphrasing Attacks [10.68370011459729]
Many recent watermarking techniques modify the output probabilities of LMs to embed a signal in the generated output that can later be detected.
We show that with access to only a limited number of generations from a black-box watermarked model, we can drastically increase the effectiveness of paraphrasing attacks to evade watermark detection.
arXiv Detail & Related papers (2024-11-08T02:22:30Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Watermarking Language Models with Error Correcting Codes [41.21656847672627]
We propose a watermarking framework that encodes statistical signals through an error correcting code.
Our method, termed robust binary code (RBC) watermark, introduces no distortion compared to the original probability distribution.
Our empirical findings suggest our watermark is fast, powerful, and robust, comparing favorably to the state-of-the-art.
arXiv Detail & Related papers (2024-06-12T05:13:09Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - Multi-Bit Distortion-Free Watermarking for Large Language Models [4.7381853007029475]
We extend an existing zero-bit distortion-free watermarking method by embedding multiple bits of meta-information as part of the watermark.
We also develop a computationally efficient decoder that extracts the embedded information from the watermark with low bit error rate.
arXiv Detail & Related papers (2024-02-26T14:01:34Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
arXiv Detail & Related papers (2024-01-25T03:57:12Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
We ask whether language models can directly learn to generate watermarked text.
We propose watermark distillation, which trains a student model to behave like a teacher model.
We find that models can learn to generate watermarked text with high detectability.
arXiv Detail & Related papers (2023-12-07T17:41:44Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.