VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency
- URL: http://arxiv.org/abs/2311.07172v2
- Date: Sun, 21 Jul 2024 12:41:18 GMT
- Title: VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency
- Authors: Vernon Toh Yan Han, Ratish Puduppully, Nancy F. Chen,
- Abstract summary: We study the performance of strong open-source LLMs on math word problems using program-based solving techniques.
We propose a systematic approach by defining the units for each quantity and ensuring the consistency of these units during mathematical operations.
Our approach, which incorporates unit consistency, currently slightly underperforms compared to an approach that does not.
- Score: 33.760209585322606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), combined with program-based solving techniques, are increasingly demonstrating proficiency in mathematical reasoning. For example, closed-source models such as OpenAI GPT-4 and Claude show excellent results in solving math word problems. However, progress in math word problem-solving for open-source LLMs is limited, and the challenges these models face are not well-studied. In this paper, we study the performance of strong open-source LLMs, including Llama 2 (7B), Code Llama (7B), and Mistral (7B) on math word problems using program-based solving techniques. Specifically, we analyze the outputs of these models when applied to math word problems and identify a category of problems that pose a significant challenge, particularly those involving quantities spanning multiple units. To address this issue, we propose a systematic approach by defining the units for each quantity and ensuring the consistency of these units during mathematical operations. We developed Unit Consistency Programs (UCPs), an annotated dataset of math word problems, each paired with programs containing unit specifications and unit verification routines. We fine-tuned Llama 2 (7B), Code Llama (7B), and Mistral (7B) models with UCPs to produce theirVerityMath variants. Our findings indicate that our approach, which incorporates unit consistency, currently slightly underperforms compared to an approach that does not. To understand the reasons behind this, we conduct an in-depth error analysis and suggest options for future improvements. Our code and dataset are available at https://github.com/vernontoh/VerityMath.
Related papers
- Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval [22.865124583257987]
We present how analogy from similarly structured questions can improve large language models' problem-solving capabilities.
Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt.
Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-11-25T15:01:25Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
We introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs.
We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources.
This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning.
arXiv Detail & Related papers (2024-03-21T17:59:50Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving.
However, their proficiency in solving mathematical problems remains inadequate.
We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data.
arXiv Detail & Related papers (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems annotated with concepts.
This benchmark is difficult, with the best model only scoring 58.1% in standard settings.
We find that models often arrive at the correct final answer through wrong reasoning steps.
arXiv Detail & Related papers (2024-01-13T03:18:16Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
We present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations.
We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions.
This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems.
arXiv Detail & Related papers (2023-10-05T17:52:09Z) - Solving Math Word Problems by Combining Language Models With Symbolic
Solvers [28.010617102877923]
Large language models (LLMs) can be combined with external tools to perform complex reasoning and calculation.
We propose an approach that combines an LLM that can incrementally formalize word problems as a set of variables and equations with an external symbolic solver.
Our approach achieves comparable accuracy to the original PAL on the GSM8K benchmark of math word problems and outperforms PAL by an absolute 20% on ALGEBRA.
arXiv Detail & Related papers (2023-04-16T04:16:06Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks.
MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways.
arXiv Detail & Related papers (2023-03-04T04:43:49Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
Two main geometry problems: calculation and proving, are usually treated as two specific tasks.
We construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems.
We also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously.
arXiv Detail & Related papers (2022-12-06T04:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.