Real-Time Machine-Learning-Based Optimization Using Input Convex Long Short-Term Memory Network
- URL: http://arxiv.org/abs/2311.07202v6
- Date: Tue, 10 Sep 2024 06:19:52 GMT
- Title: Real-Time Machine-Learning-Based Optimization Using Input Convex Long Short-Term Memory Network
- Authors: Zihao Wang, Donghan Yu, Zhe Wu,
- Abstract summary: We present a novel input memory-based neural network-based optimization for energy and chemical systems.
We demonstrate the superior performance of ICLSTM-based optimization in terms of runtime.
Specifically, in a real-time optimization problem of a real-world energy system at LHT Holdings in Singapore, IC-LSTM-based optimization achieved at least 4-fold compared to conventional LSTM-based optimization.
- Score: 18.84965086425835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network-based optimization and control methods, often referred to as black-box approaches, are increasingly gaining attention in energy and manufacturing systems, particularly in situations where first-principles models are either unavailable or inaccurate. However, their non-convex nature significantly slows down the optimization and control processes, limiting their application in real-time decision-making processes. To address this challenge, we propose a novel Input Convex Long Short-Term Memory (IC-LSTM) network to enhance the computational efficiency of neural network-based optimization. Through two case studies employing real-time neural network-based optimization for optimizing energy and chemical systems, we demonstrate the superior performance of IC-LSTM-based optimization in terms of runtime. Specifically, in a real-time optimization problem of a real-world solar photovoltaic energy system at LHT Holdings in Singapore, IC-LSTM-based optimization achieved at least 4-fold speedup compared to conventional LSTM-based optimization. These results highlight the potential of IC-LSTM networks to significantly enhance the efficiency of neural network-based optimization and control in practical applications. Source code is available at https://github.com/killingbear999/ICLSTM.
Related papers
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Improved Optimization for the Neural-network Quantum States and Tests on the Chromium Dimer [11.985673663540688]
Neural-network Quantum States (NQS) has significantly advanced wave function ansatz research.
This work introduces three algorithmic enhancements to reduce computational demands of VMC optimization using NQS.
arXiv Detail & Related papers (2024-04-14T15:07:57Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Full-Stack Optimization for CAM-Only DNN Inference [2.0837295518447934]
This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors.
We propose a novel compilation flow to optimize convolutions on APs by reducing their arithmetic intensity.
Our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5x compared to crossbar in-memory accelerators.
arXiv Detail & Related papers (2024-01-23T10:27:38Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Approaching Globally Optimal Energy Efficiency in Interference Networks
via Machine Learning [22.926877147296594]
This work presents a machine learning approach to optimize the energy efficiency (EE) in a multi-cell wireless network.
Results show that the method achieves an EE close to the optimum by the branch-and- computation testing.
arXiv Detail & Related papers (2022-11-25T08:36:34Z) - Towards Energy-Efficient, Low-Latency and Accurate Spiking LSTMs [1.7969777786551424]
Spiking Neural Networks (SNNs) have emerged as an attractive-temporal computing paradigm vision for complex tasks.
We propose an optimized spiking long short-term memory networks (LSTM) training framework that involves a novel.
rev-to-SNN conversion framework, followed by SNN training.
We evaluate our framework on sequential learning tasks including temporal M, Google Speech Commands (GSC) datasets, and UCI Smartphone on different LSTM architectures.
arXiv Detail & Related papers (2022-10-23T04:10:27Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Efficient On-Chip Learning for Optical Neural Networks Through
Power-Aware Sparse Zeroth-Order Optimization [12.052076188811052]
Optical neural networks (ONNs) have demonstrated record-breaking potential in neuromorphic computing.
We propose a novel on-chip learning framework to release the full potential of ONNs for power-efficient in situ training.
arXiv Detail & Related papers (2020-12-21T07:00:39Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.