論文の概要: Fine-Tuning the Retrieval Mechanism for Tabular Deep Learning
- arxiv url: http://arxiv.org/abs/2311.07343v1
- Date: Mon, 13 Nov 2023 13:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 14:11:41.440270
- Title: Fine-Tuning the Retrieval Mechanism for Tabular Deep Learning
- Title(参考訳): 喉頭深部学習における検索機構の微調整
- Authors: Felix den Breejen, Sangmin Bae, Stephen Cha, Tae-Young Kim, Seoung
Hyun Koh, Se-Young Yun
- Abstract要約: ニューラルネットワークが予測を行いながら他のデータポイントを参照できるようにする,革新的な検索機構について検討する。
実験の結果,検索に基づくトレーニング,特に事前学習したTabPFNモデルを微調整する場合は,既存の手法をはるかに上回ることがわかった。
- 参考スコア(独自算出の注目度): 21.91891312919668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While interests in tabular deep learning has significantly grown,
conventional tree-based models still outperform deep learning methods. To
narrow this performance gap, we explore the innovative retrieval mechanism, a
methodology that allows neural networks to refer to other data points while
making predictions. Our experiments reveal that retrieval-based training,
especially when fine-tuning the pretrained TabPFN model, notably surpasses
existing methods. Moreover, the extensive pretraining plays a crucial role to
enhance the performance of the model. These insights imply that blending the
retrieval mechanism with pretraining and transfer learning schemes offers
considerable potential for advancing the field of tabular deep learning.
- Abstract(参考訳): 表層深層学習への関心は著しく高まっているが、従来の木系モデルはいまだに深層学習よりも優れている。
この性能のギャップを狭めるために、ニューラルネットワークが予測しながら他のデータポイントを参照できるようにする手法である、革新的な検索メカニズムを探求する。
実験の結果,検索に基づくトレーニング,特に事前学習したTabPFNモデルを微調整する場合は,既存の手法をはるかに超えることがわかった。
さらに、モデルの性能を高めるために、広範な事前訓練が重要な役割を果たす。
これらの知見は,検索機構と事前学習と伝達学習を融合させることで,表層深層学習の分野を前進させる可能性が示唆された。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Escaping the Forest: Sparse Interpretable Neural Networks for Tabular Data [0.0]
我々のモデルであるSparse TABular NET や sTAB-Net がツリーベースモデルよりも効果的であることを示す。
SHAPのようなポストホックメソッドよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-23T10:50:07Z) - Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
我々は、インスタンス間のセマンティックな類似性をキャプチャする線形射影を学習するために設計された古典的近傍成分分析(NCA)を再考する。
学習目的の調整や深層学習アーキテクチャの統合といった微調整は,NAAの性能を著しく向上させることがわかった。
また,提案したModernNCAの効率性と予測精度を向上する,近隣のサンプリング戦略も導入する。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
本研究は, ジェネレーティブ・クラス・インクリメンタル・ラーニング(GCIL, Generative Class Incremental Learning)への新たなアプローチを提案する。
我々は, 忘れる機構の統合により, 新たな知識獲得におけるモデルの性能が著しく向上することを発見した。
論文 参考訳(メタデータ) (2024-03-27T05:10:38Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
この論文の目的は、連想記憶モデルと生成モデルの両方において、アンラーニングの有効性を理解することである。
構造化データの選択により、連想記憶モデルは、相当量のアトラクションを持つニューラルダイナミクスのアトラクションとしての概念を検索することができる。
Boltzmann Machinesの新しい正規化手法が提案され、データセットから隠れ確率分布を学習する以前に開発された手法より優れていることが証明された。
論文 参考訳(メタデータ) (2024-03-04T23:12:42Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Mechanism of feature learning in deep fully connected networks and
kernel machines that recursively learn features [15.29093374895364]
我々は,ニューラルネットワークが勾配特徴を学習するメカニズムを同定し,特徴付ける。
私たちのアンザッツは、突発的な特徴の出現や単純さのバイアスなど、さまざまな深層学習現象に光を当てています。
この特徴学習機構の有効性を実証するため,古典的非機能学習モデルにおいて特徴学習を可能にする。
論文 参考訳(メタデータ) (2022-12-28T15:50:58Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。