Causal Discovery under Latent Class Confounding
- URL: http://arxiv.org/abs/2311.07454v5
- Date: Wed, 16 Oct 2024 12:28:25 GMT
- Title: Causal Discovery under Latent Class Confounding
- Authors: Bijan Mazaheri, Spencer Gordon, Yuval Rabani, Leonard Schulman,
- Abstract summary: We show that globally confounded causal structures can still be identifiable with arbitrary structural equations and noise functions.
We demonstrate that globally confounded causal structures can still be identifiable with arbitrary structural equations and noise functions.
- Score: 2.1749194587826026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An acyclic causal structure can be described with directed acyclic graph (DAG), where arrows indicate the possibility of direct causation. The task of learning this structure from data is known as "causal discovery." Diverse populations or changing environments can sometimes give rise to data that is heterogeneous in the following sense: each population/environment is a "source" which idiosyncratically determines the forms of those direct causal effects. From this perspective, the source is a latent common cause for every observed variable. While some methods for causal discovery are able to work around latent confounding in special cases, especially when only few observables are confounded, a global confounder is a difficult challenge. The only known ways to deal with latent global confounding involve assumptions that limit the structural equations and/or noise functions. We demonstrate that globally confounded causal structures can still be identifiable with arbitrary structural equations and noise functions, so long as the number of latent classes remains small relative to the size and sparsity of the underlying DAG.
Related papers
- A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
We introduce a novel framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network.
We develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones.
Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
arXiv Detail & Related papers (2023-12-18T07:57:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
Learning a set of direct causes of a target variable from an observational joint distribution is a fundamental problem in science.
Here, we are only interested in identifying the direct causes of one target variable, not the full DAG.
This allows us to relax the identifiability assumptions and develop possibly faster and more robust algorithms.
arXiv Detail & Related papers (2023-07-29T18:31:35Z) - Heteroscedastic Causal Structure Learning [2.566492438263125]
We tackle the heteroscedastic causal structure learning problem under Gaussian noises.
By exploiting the normality of the causal mechanisms, we can recover a valid causal ordering.
The result is HOST (Heteroscedastic causal STructure learning), a simple yet effective causal structure learning algorithm.
arXiv Detail & Related papers (2023-07-16T07:53:16Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
Learning causal structure from observational data is a fundamental challenge in machine learning.
This paper proposes Differentiable Invariant Causal Discovery (DICD) to avoid learning spurious edges and wrong causal directions.
Extensive experiments on synthetic and real-world datasets verify that DICD outperforms state-of-the-art causal discovery methods up to 36% in SHD.
arXiv Detail & Related papers (2022-05-31T09:29:07Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.