A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables
- URL: http://arxiv.org/abs/2312.11001v1
- Date: Mon, 18 Dec 2023 07:57:39 GMT
- Title: A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables
- Authors: Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng,
Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang
- Abstract summary: We introduce a novel framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network.
We develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones.
Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
- Score: 28.51579090194802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing causal discovery methods rely on the assumption of no latent
confounders, limiting their applicability in solving real-life problems. In
this paper, we introduce a novel, versatile framework for causal discovery that
accommodates the presence of causally-related hidden variables almost
everywhere in the causal network (for instance, they can be effects of observed
variables), based on rank information of covariance matrix over observed
variables. We start by investigating the efficacy of rank in comparison to
conditional independence and, theoretically, establish necessary and sufficient
conditions for the identifiability of certain latent structural patterns.
Furthermore, we develop a Rank-based Latent Causal Discovery algorithm, RLCD,
that can efficiently locate hidden variables, determine their cardinalities,
and discover the entire causal structure over both measured and hidden ones. We
also show that, under certain graphical conditions, RLCD correctly identifies
the Markov Equivalence Class of the whole latent causal graph asymptotically.
Experimental results on both synthetic and real-world personality data sets
demonstrate the efficacy of the proposed approach in finite-sample cases.
Related papers
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - Learning Discrete Latent Variable Structures with Tensor Rank Conditions [30.292492090200984]
Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns.
Most studies focus on the linear latent variable model or impose strict constraints on latent structures, which fail to address cases in discrete data involving non-linear relationships or complex latent structures.
We explore a tensor rank condition on contingency tables for an observed variable set $mathbfX_p$, showing that the rank is determined by the minimum support of a specific conditional set.
One can locate the latent variable through probing the rank on different observed variables
arXiv Detail & Related papers (2024-06-11T07:25:17Z) - Local Causal Structure Learning in the Presence of Latent Variables [16.88791886307876]
We present a principled method for determining whether a variable is a direct cause or effect of a target.
Experimental results on both synthetic and real-world data validate the effectiveness and efficiency of our approach.
arXiv Detail & Related papers (2024-05-25T13:31:05Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.