論文の概要: Uncertainty estimation of machine learning spatial precipitation predictions from satellite data
- arxiv url: http://arxiv.org/abs/2311.07511v3
- Date: Wed, 21 Aug 2024 18:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 19:56:46.298423
- Title: Uncertainty estimation of machine learning spatial precipitation predictions from satellite data
- Title(参考訳): 衛星データを用いた機械学習空間降水予測の不確かさ推定
- Authors: Georgia Papacharalampous, Hristos Tyralis, Nikolaos Doulamis, Anastasios Doulamis,
- Abstract要約: 衛星データとゲージデータを機械学習と組み合わせることで、高解像度の降水データセットを生成する。
6つのアルゴリズムをベンチマークすることで、そのような推定を最適に行う方法のギャップに対処する。
本研究では,空間データ予測の不確かさを推定する機械学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.8623569699070353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Merging satellite and gauge data with machine learning produces high-resolution precipitation datasets, but uncertainty estimates are often missing. We addressed the gap of how to optimally provide such estimates by benchmarking six algorithms, mostly novel even for the more general task of quantifying predictive uncertainty in spatial prediction settings. On 15 years of monthly data from over the contiguous United States (CONUS), we compared quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machine (LightGBM), and quantile regression neural networks (QRNN). Their ability to issue predictive precipitation quantiles at nine quantile levels (0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975), approximating the full probability distribution, was evaluated using quantile scoring functions and the quantile scoring rule. Predictors at a site were nearby values from two satellite precipitation retrievals, namely PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and IMERG (Integrated Multi-satellitE Retrievals), and the site's elevation. The dependent variable was the monthly mean gauge precipitation. With respect to QR, LightGBM showed improved performance in terms of the quantile scoring rule by 11.10%, also surpassing QRF (7.96%), GRF (7.44%), GBM (4.64%) and QRNN (1.73%). Notably, LightGBM outperformed all random forest variants, the current standard in spatial prediction with machine learning. To conclude, we propose a suite of machine learning algorithms for estimating uncertainty in spatial data prediction, supported with a formal evaluation framework based on scoring functions and scoring rules.
- Abstract(参考訳): 衛星データとゲージデータを機械学習と組み合わせることで、高解像度の降水データセットが生成されるが、不確実性推定はしばしば欠落している。
空間予測設定における予測の不確かさの定量化という,より一般的なタスクであっても,6つのアルゴリズムをベンチマークすることで,そのような推定を最適に行う方法のギャップに対処した。
連続した米国(CONUS)における15年間の月次データでは、量子回帰(QRF)、量子回帰(QRF)、一般化ランダム森林(GRF)、勾配押し上げ機(GBM)、光勾配押し上げ機(LightGBM)、量子回帰ニューラルネットワーク(QRNN)を比較した。
予測降水量計を9つの量子レベル(0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975)で発行する能力について評価した。
現場の予測値は、PERSIANN(人工ニューラルネットワークを用いたリモートセンシング情報からの降水推定)とIMERG(Integrated Multi-satellitE Retrievals)の2つの衛星降水検索と、サイトの高さから得られた。
従属変数は月平均ゲージ降水量である。
QRに関して、LightGBMはQRF(7.96%)、GRF(7.44%)、GBM(4.64%)、QRNN(1.73%)を上回った。
特に、LightGBMは、機械学習による空間予測における現在の標準である、すべてのランダムな森林変種を上回りました。
そこで本研究では,空間データ予測の不確かさを推定する機械学習アルゴリズムを,スコアリング関数とスコアリングルールに基づく形式的評価フレームワークを用いて提案する。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms [3.8623569699070353]
データマージによって降水データセットを作成するエンジニアリングタスクに対して,分散回帰の概念を導入する。
本研究では,空間予測だけでなく,一般の予測問題にも有用な新しいアンサンブル学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-29T05:58:00Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Uncertainty estimation in spatial interpolation of satellite precipitation with ensemble learning [3.8623569699070353]
本研究では,9つの量子化に基づくアンサンブル学習装置を導入し,大規模な降水データセットに適用する。
私たちのアンサンブル学習者は6つの積み重ねと3つの簡単な方法(平均、中央値、最良の組み合わせ)を含む。
QRとQRNNで積み重ねると、量子レベルの関心事で最高の結果が得られる。
論文 参考訳(メタデータ) (2024-03-14T17:45:56Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
本稿では,局所的なカバレッジ保証を伴う回帰問題に対して,予測間隔を調整するための一連の手法を提案する。
回帰木とランダムフォレストを適合度スコアでトレーニングすることで分割を作成する。
提案手法は多種多様な適合性スコアや予測設定に適用できるため,多種多様である。
論文 参考訳(メタデータ) (2024-02-12T01:17:09Z) - Merging satellite and gauge-measured precipitation using LightGBM with
an emphasis on extreme quantiles [7.434517639563671]
空間と時間の実際の降水を知ることは、水文モデリングの応用において重要である。
グリッド化された衛星降水データセットは、実際の降水量を推定する代替オプションを提供する。
降水量の予測を改善するため、雨量計に基づく計測と格子状衛星降水生成物の統合に機械学習を適用した。
論文 参考訳(メタデータ) (2023-02-02T20:03:21Z) - Comparison of machine learning algorithms for merging gridded satellite
and earth-observed precipitation data [7.434517639563671]
我々は,グローバル・ヒストリカル・クリマトロジー・ネットワークの月次降水データ,バージョン2。
その結果,2乗誤差スコアリング関数が最も正確であることが示唆された。
論文 参考訳(メタデータ) (2022-12-17T09:39:39Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
量子レグレッションは、現実の望ましいカバレッジレベルよりもアンファンダーカバー(enmphunder-cover)する傾向がある。
我々は、量子レグレッションが固有のアンダーカバーバイアスに悩まされていることを証明している。
我々の理論は、この過大被覆バイアスが特定の高次元パラメータ推定誤差に起因することを明らかにしている。
論文 参考訳(メタデータ) (2021-06-10T06:11:55Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z) - Censored Quantile Regression Forest [81.9098291337097]
我々は、検閲に適応し、データが検閲を示さないときに量子スコアをもたらす新しい推定方程式を開発する。
提案手法は, パラメトリックなモデリング仮定を使わずに, 時間単位の定量を推定することができる。
論文 参考訳(メタデータ) (2020-01-08T23:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。