論文の概要: GPT-4V(ision) as A Social Media Analysis Engine
- arxiv url: http://arxiv.org/abs/2311.07547v1
- Date: Mon, 13 Nov 2023 18:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 12:54:12.111560
- Title: GPT-4V(ision) as A Social Media Analysis Engine
- Title(参考訳): ソーシャルメディア分析エンジンとしてのGPT-4V(ision)
- Authors: Hanjia Lyu, Jinfa Huang, Daoan Zhang, Yongsheng Yu, Xinyi Mou,
Jinsheng Pan, Zhengyuan Yang, Zhongyu Wei, Jiebo Luo
- Abstract要約: 本稿では,GPT-4Vのソーシャルマルチメディア分析能力について考察する。
我々は、感情分析、ヘイトスピーチ検出、フェイクニュース識別、人口推定、政治的イデオロギー検出を含む5つの代表的なタスクを選択する。
GPT-4Vはこれらのタスクにおいて顕著な効果を示し、画像とテキストのペアの理解、文脈と文化の認識、広義のコモンセンス知識などの強みを示している。
- 参考スコア(独自算出の注目度): 77.23394183063238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has offered insights into the extraordinary capabilities of
Large Multimodal Models (LMMs) in various general vision and language tasks.
There is growing interest in how LMMs perform in more specialized domains.
Social media content, inherently multimodal, blends text, images, videos, and
sometimes audio. Understanding social multimedia content remains a challenging
problem for contemporary machine learning frameworks. In this paper, we explore
GPT-4V(ision)'s capabilities for social multimedia analysis. We select five
representative tasks, including sentiment analysis, hate speech detection, fake
news identification, demographic inference, and political ideology detection,
to evaluate GPT-4V. Our investigation begins with a preliminary quantitative
analysis for each task using existing benchmark datasets, followed by a careful
review of the results and a selection of qualitative samples that illustrate
GPT-4V's potential in understanding multimodal social media content. GPT-4V
demonstrates remarkable efficacy in these tasks, showcasing strengths such as
joint understanding of image-text pairs, contextual and cultural awareness, and
extensive commonsense knowledge. Despite the overall impressive capacity of
GPT-4V in the social media domain, there remain notable challenges. GPT-4V
struggles with tasks involving multilingual social multimedia comprehension and
has difficulties in generalizing to the latest trends in social media.
Additionally, it exhibits a tendency to generate erroneous information in the
context of evolving celebrity and politician knowledge, reflecting the known
hallucination problem. The insights gleaned from our findings underscore a
promising future for LMMs in enhancing our comprehension of social media
content and its users through the analysis of multimodal information.
- Abstract(参考訳): 近年,様々な視覚や言語タスクにおけるLMM(Large Multimodal Models)の異常な能力に関する知見が報告されている。
LMMがより専門的なドメインでどのように機能するか、という関心が高まっている。
ソーシャルメディアコンテンツは本質的にマルチモーダルであり、テキスト、画像、ビデオ、時にはオーディオをブレンドする。
ソーシャルマルチメディアコンテンツを理解することは、現代の機械学習フレームワークにとって難しい問題である。
本稿では,GPT-4V(ision)のソーシャルマルチメディア分析能力について検討する。
GPT-4Vを評価するために、感情分析、ヘイトスピーチ検出、フェイクニュース識別、人口統計分析、政治的イデオロギー検出を含む5つの代表的なタスクを選択した。
本研究は,既存のベンチマークデータセットを用いた各タスクの予備的定量的解析から始まり,その結果の精査と,マルチモーダルなソーシャルメディアコンテンツ理解におけるgpt-4vの可能性を示す質的サンプルの選定を行った。
gpt-4vはこれらのタスクにおいて顕著な効果を示し、画像テキストペアの理解、文脈的および文化的認識、広範な常識的知識といった強みを示す。
ソーシャルメディア分野におけるGPT-4Vの全体的な能力にもかかわらず、注目すべき課題は残る。
gpt-4vは多言語社会マルチメディア理解に関わる課題に苦慮しており、ソーシャルメディアの最新トレンドへの一般化に苦慮している。
また、既知の幻覚問題を反映して、著名人や政治家の知識の発展という文脈で誤った情報を生み出す傾向を示す。
この知見は,マルチモーダル情報の分析を通じて,ソーシャルメディアコンテンツとその利用者の理解を深める上で,LMMにとって有望な将来性を示している。
関連論文リスト
- Large Language Models Meet Text-Centric Multimodal Sentiment Analysis: A Survey [66.166184609616]
ChatGPTは、テキスト中心のマルチモーダルタスクに大規模言語モデル(LLM)を適用する大きな可能性を開く。
既存のLLMがテキスト中心のマルチモーダル感情分析タスクにどのように適応できるかは、まだ不明である。
論文 参考訳(メタデータ) (2024-06-12T10:36:27Z) - MM-Soc: Benchmarking Multimodal Large Language Models in Social Media Platforms [25.73585435351771]
本稿では,マルチモーダル大規模言語モデルによるソーシャルメディアコンテンツの理解を評価するためのベンチマークであるMM-Socを紹介する。
MM-Socは、注目すべきマルチモーダルデータセットをコンパイルし、新しい大規模なYouTubeタグ付けデータセットを組み込む。
分析の結果、ゼロショット環境では、様々なMLLMが一般的にソーシャルメディアのタスクを扱うのに困難を呈することが明らかとなった。
論文 参考訳(メタデータ) (2024-02-21T22:27:40Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
ソーシャルメディア処理のための大規模ビジョン言語モデル(SoMeLVLM)を提案する。
SoMeLVLMは、知識と理解、応用、分析、評価、作成を含む5つの重要な機能を備えた認知フレームワークである。
実験により,複数のソーシャルメディアタスクにおいて,SoMeLVLMが最先端のパフォーマンスを達成できることが実証された。
論文 参考訳(メタデータ) (2024-02-20T14:02:45Z) - Human vs. LMMs: Exploring the Discrepancy in Emoji Interpretation and Usage in Digital Communication [68.40865217231695]
本研究は,ヒト型絵文字の複製におけるGPT-4Vの挙動について検討した。
この結果は、人間の解釈の主観的な性質から、人間とGPT-4Vの行動に明確な相違があることを示唆している。
論文 参考訳(メタデータ) (2024-01-16T08:56:52Z) - A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering [53.70661720114377]
マルチモーダル・大型モデル(MLM)は視覚的理解の分野を著しく進歩させ、視覚的質問応答(VQA)の領域で顕著な能力を提供している
しかし、真の課題は知識集約型VQAタスクの領域にある。
1) モデルが視覚的手がかりを理解し、一般的な知識にどのように結びつくかを評価するコモンセンス知識、2) 画像から特定の知識を推論し、提示する際のモデルのスキルをテストする微粒な世界知識。
論文 参考訳(メタデータ) (2023-11-13T18:22:32Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
我々は,最新のモデルであるGPT-4Vを分析し,LMMの理解を深める。
GPT-4Vは、任意にインターリーブされたマルチモーダル入力を処理するという前例のない能力により、強力なマルチモーダルジェネラリストシステムとなっている。
GPT-4Vの、入力画像に描かれた視覚マーカーを理解するユニークな能力は、新しい人間とコンピュータの相互作用方法をもたらす。
論文 参考訳(メタデータ) (2023-09-29T17:34:51Z) - A Comprehensive Review of Visual-Textual Sentiment Analysis from Social
Media Networks [2.048226951354646]
ソーシャルメディアネットワークは人々の生活の重要な側面となり、彼らの考え、意見、感情のプラットフォームとして機能している。
これらの感情を分析することで、ブランド評価、YouTubeの映画レビュー、ヘルスケアアプリケーションなど、さまざまな応用が明らかになった。
本研究では、ソーシャルメディア上に投稿された視覚的・テキスト的データを調査するマルチモーダル感情分析の分野に焦点を当てた。
論文 参考訳(メタデータ) (2022-07-05T16:28:47Z) - Multi-modal Misinformation Detection: Approaches, Challenges and Opportunities [5.4482836906033585]
ソーシャルメディアプラットフォームは、テキストベースのフォーラムからマルチモーダル環境へと進化している。
誤情報スプレッダーは、最近、テキストや画像などのモダリティ間のコンテキスト接続をターゲットにしている。
マルチモーダルな誤情報検出の分野での新たな研究機会を見出すために,既存のアプローチを分析,分類,そして,それらが直面する課題や欠点に加えて特定する。
論文 参考訳(メタデータ) (2022-03-25T19:45:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。