ReIDTracker Sea: the technical report of BoaTrack and SeaDronesSee-MOT
challenge at MaCVi of WACV24
- URL: http://arxiv.org/abs/2311.07616v1
- Date: Sun, 12 Nov 2023 07:37:07 GMT
- Title: ReIDTracker Sea: the technical report of BoaTrack and SeaDronesSee-MOT
challenge at MaCVi of WACV24
- Authors: Kaer Huang, Weitu Chong
- Abstract summary: Our solution tries to explore Multi-Object Tracking in maritime Unmanned Aerial vehicles (UAVs) and Unmanned Surface Vehicles (USVs) usage scenarios.
The scheme achieved top 3 performance on both UAV-based Multi-Object Tracking with Reidentification and USV-based Multi-Object Tracking benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Object Tracking is one of the most important technologies in maritime
computer vision. Our solution tries to explore Multi-Object Tracking in
maritime Unmanned Aerial vehicles (UAVs) and Unmanned Surface Vehicles (USVs)
usage scenarios. Most of the current Multi-Object Tracking algorithms require
complex association strategies and association information (2D location and
motion, 3D motion, 3D depth, 2D appearance) to achieve better performance,
which makes the entire tracking system extremely complex and heavy. At the same
time, most of the current Multi-Object Tracking algorithms still require video
annotation data which is costly to obtain for training. Our solution tries to
explore Multi-Object Tracking in a completely unsupervised way. The scheme
accomplishes instance representation learning by using self-supervision on
ImageNet. Then, by cooperating with high-quality detectors, the multi-target
tracking task can be completed simply and efficiently. The scheme achieved top
3 performance on both UAV-based Multi-Object Tracking with Reidentification and
USV-based Multi-Object Tracking benchmarks and the solution won the
championship in many multiple Multi-Object Tracking competitions. such as
BDD100K MOT,MOTS, Waymo 2D MOT
Related papers
- Lifting Multi-View Detection and Tracking to the Bird's Eye View [5.679775668038154]
Recent advancements in multi-view detection and 3D object recognition have significantly improved performance.
We compare modern lifting methods, both parameter-free and parameterized, to multi-view aggregation.
We present an architecture that aggregates the features of multiple times steps to learn robust detection.
arXiv Detail & Related papers (2024-03-19T09:33:07Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.