Maximum expectation of observables with restricted purity states
- URL: http://arxiv.org/abs/2311.07680v2
- Date: Fri, 12 Jul 2024 05:48:25 GMT
- Title: Maximum expectation of observables with restricted purity states
- Authors: Vikesh Siddhu, John Smolin,
- Abstract summary: Assessment of practical quantum information processing (QIP) remains partial without understanding limits imposed by noise.
We fulfill the need for estimates on performing noisy quantum state preparation, verification, and observation.
We also give a simple but fundamental insight, noisy systems always give higher ground-state energy than their noiseless counterparts.
- Score: 2.7624021966289605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessment of practical quantum information processing (QIP) remains partial without understanding limits imposed by noise. Unfortunately, mere description of noise grows exponentially with system size, becoming cumbersome even for modest sized systems of imminent practical interest. We fulfill the need for estimates on performing noisy quantum state preparation, verification, and observation. To do the estimation we propose fast numerical algorithms to maximize the expectation value of any $d$-dimensional observable over states of bounded purity. This bound on purity factors in noise in a measurable way. Our fastest algorithm takes $O(d)$ steps if the eigendecomposition of the observable is known, otherwise takes $O(d^3)$ steps at worst. The algorithms also solve maximum likelihood estimation for quantum state tomography with convex and even non-convex purity constraints. Numerics show performance of our key sub-routine (it finds in linear time a probability vector with bounded norm that most overlaps with a fixed vector) can be several orders of magnitude faster than a common state-of-the-art convex optimization solver. Our work fosters a practical way forward to asses limitations on QIP imposed by quantum noise. Along the way, we also give a simple but fundamental insight, noisy systems (equivalently noisy Hamiltonians) always give higher ground-state energy than their noiseless counterparts.
Related papers
- Quartic quantum speedups for planted inference [44.820711784498]
We describe a quantum algorithm for the Planted Noisy $k$XOR problem.
Our work suggests that some constructions are susceptible to super-quadratic quantum attacks.
arXiv Detail & Related papers (2024-06-27T17:54:28Z) - Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
In quantum mechanics, measuring the expectation value of a general observable has an inherent statistical uncertainty.
We provide an adaptive quantum algorithm for estimating the expectation values of $M$ general observables within root mean squared error.
Our method paves a new way to precisely understand and predict various physical properties in complicated quantum systems using quantum computers.
arXiv Detail & Related papers (2024-06-05T14:16:47Z) - On the approximability of random-hypergraph MAX-3-XORSAT problems with quantum algorithms [0.0]
A feature of constraint satisfaction problems in NP is approximation hardness, where in the worst case, finding sufficient-quality approximate solutions is exponentially hard.
For algorithms based on Hamiltonian time evolution, we explore this question through the prototypically hard MAX-3-XORSAT problem class.
We show that, for random hypergraphs in the approximation-hard regime, if we define the energy to be $E = N_mathrmunsat-N_mathrmsat$, spectrally filtered quantum optimization will return states with $E leq q_m.
arXiv Detail & Related papers (2023-12-11T04:15:55Z) - Error-mitigated fermionic classical shadows on noisy quantum devices [0.3775283002059579]
Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed.
We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise.
Our algorithm efficiently estimates $k$-RDMs with $widetildemathcal O(knk)$ state copies and $widetildemathcal O(sqrtn)$ calibration measurements for GTM noise.
arXiv Detail & Related papers (2023-10-19T13:27:19Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Logical shadow tomography: Efficient estimation of error-mitigated
observables [11.659279774157255]
We introduce a technique to estimate error-mitigated expectation values on noisy quantum computers.
Our technique performs shadow tomography on a logical state to produce a memory-efficient classical reconstruction of the noisy density matrix.
Relative to virtual distillation, our technique can compute powers of the density matrix without additional copies of quantum states or quantum memory.
arXiv Detail & Related papers (2022-03-14T16:42:22Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Virtual Distillation for Quantum Error Mitigation [0.6745502291821955]
Quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations.
We propose a near-term friendly strategy to mitigate errors by entangling and measuring $M$ copies of a noisy state.
We demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows.
arXiv Detail & Related papers (2020-11-13T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.