論文の概要: Matching aggregate posteriors in the variational autoencoder
- arxiv url: http://arxiv.org/abs/2311.07693v2
- Date: Fri, 04 Oct 2024 23:28:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:11:19.382024
- Title: Matching aggregate posteriors in the variational autoencoder
- Title(参考訳): 変分オートエンコーダにおける集合体後部マッチング
- Authors: Surojit Saha, Sarang Joshi, Ross Whitaker,
- Abstract要約: 変分オートエンコーダ(VAE)は、よく研究され、深い、潜伏変数モデル(DLVM)である。
本稿では,VAE に付随する目的関数を改良することにより,VAE の欠点を克服する。
提案手法はEmphaggregate variational autoencoder (AVAE) と命名され,VAEの理論的枠組みに基づいて構築されている。
- 参考スコア(独自算出の注目度): 0.5759862457142761
- License:
- Abstract: The variational autoencoder (VAE) is a well-studied, deep, latent-variable model (DLVM) that efficiently optimizes the variational lower bound of the log marginal data likelihood and has a strong theoretical foundation. However, the VAE's known failure to match the aggregate posterior often results in \emph{pockets/holes} in the latent distribution (i.e., a failure to match the prior) and/or \emph{posterior collapse}, which is associated with a loss of information in the latent space. This paper addresses these shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior. We use kernel density estimate (KDE) to model the aggregate posterior in high dimensions. The proposed method is named the \emph{aggregate variational autoencoder} (AVAE) and is built on the theoretical framework of the VAE. Empirical evaluation of the proposed method on multiple benchmark data sets demonstrates the effectiveness of the AVAE relative to state-of-the-art (SOTA) methods.
- Abstract(参考訳): 変動型オートエンコーダ(VAE)は、ログ境界データの変動的下界を効率的に最適化し、強力な理論的基礎を持つ、よく研究された、深い潜伏変数モデル(DLVM)である。
しかしながら、VAEが集合後部と一致しないことが知られていることは、潜伏分布(すなわち、前者と一致しない)における \emph{pockets/holes} や、潜伏空間における情報の損失と関連する \emph{posterior collapse} をもたらすことが多い。
本稿では,VAEと関連する目的関数を再構成することにより,VAEにおけるこれらの欠点に対処する。
我々は、カーネル密度推定(KDE)を用いて、高次元の集合体後部をモデル化する。
提案手法は, 可変オートエンコーダ (AVAE) と命名され, VAEの理論的枠組みに基づいて構築されている。
複数のベンチマークデータセットに対する提案手法の実証評価は, 最先端(SOTA)手法と比較してAVAEの有効性を示す。
関連論文リスト
- Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
本稿では,不規則な潜伏分布に対応するために,新しい適応型3段階一様変換(UT)モジュールを提案する。
この手法は不規則分布を潜在空間の均一分布に再構成することにより、潜在表現の絡み合いと解釈可能性を大幅に向上させる。
実験により,提案するUTモジュールの有効性を実証し,ベンチマークデータセット間の絡み合いの指標を改良した。
論文 参考訳(メタデータ) (2024-07-02T21:46:23Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Learning Conditional Variational Autoencoders with Missing Covariates [0.8563354084119061]
条件変分オートエンコーダ(CVAE)は、多種多様な深部生成モデルである。
CVAE および GP 以前のVAE を学習するための計算効率のよい手法を開発した。
本研究は,本手法が従来の手法よりも優れていることを示すとともに,シミュレーションデータセットに関する実験である。
論文 参考訳(メタデータ) (2022-03-02T16:22:09Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
GPモデルの推論は、セミアモタイズ法よりもはるかに高速な1つのフィードフォワードパスによって行われる。
提案手法は,複数のベンチマークデータセットの最先端データよりも高い確率でテストデータが得られることを示す。
論文 参考訳(メタデータ) (2021-02-05T13:01:12Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
確率的生成モデルのための計算的に安定なフレームワークである階層的経験的ベイズオートエンコーダ(HEBAE)を提案する。
鍵となる貢献は2つであり、まず、符号化分布を階層的に優先することで、再構成損失関数の最小化と過正規化の回避とのトレードオフを適応的にバランスさせることで、利益を得る。
論文 参考訳(メタデータ) (2020-07-20T18:18:39Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
敵攻撃や他の入力摂動に対する変分オートエンコーダ(VAE)の堅牢性を理解するために,我々は進出している。
確率モデルにおけるロバスト性のための新しい基準である$r$-robustnessを開発する。
遠心法を用いて訓練したVAEが、ロバストネスの指標でよく評価されていることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:22:29Z) - Preventing Posterior Collapse with Levenshtein Variational Autoencoder [61.30283661804425]
我々は,エビデンス・ロー・バウンド(ELBO)を最適化し,後部崩壊を防止できる新しい目的に置き換えることを提案する。
本稿では,Levenstein VAEが後方崩壊防止のための代替手法よりも,より情報的な潜伏表現を生成することを示す。
論文 参考訳(メタデータ) (2020-04-30T13:27:26Z) - A Batch Normalized Inference Network Keeps the KL Vanishing Away [35.40781000297285]
変分オートエンコーダ(VAE)はモデルの後続変数を近似するために広く用いられている。
VAEはしばしば「後崩壊」と呼ばれる退化した局所最適値に収束する
論文 参考訳(メタデータ) (2020-04-27T05:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。