Learning Conditional Variational Autoencoders with Missing Covariates
- URL: http://arxiv.org/abs/2203.01218v1
- Date: Wed, 2 Mar 2022 16:22:09 GMT
- Title: Learning Conditional Variational Autoencoders with Missing Covariates
- Authors: Siddharth Ramchandran, Gleb Tikhonov, Otto L\"onnroth, Pekka
Tiikkainen, Harri L\"ahdesm\"aki
- Abstract summary: Conditional variational autoencoders (CVAEs) are versatile deep generative models.
We develop computationally efficient methods to learn CVAEs and GP prior VAEs.
Our experiments on simulated datasets as well as on a clinical trial study show that the proposed method outperforms previous methods.
- Score: 0.8563354084119061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional variational autoencoders (CVAEs) are versatile deep generative
models that extend the standard VAE framework by conditioning the generative
model with auxiliary covariates. The original CVAE model assumes that the data
samples are independent, whereas more recent conditional VAE models, such as
the Gaussian process (GP) prior VAEs, can account for complex correlation
structures across all data samples. While several methods have been proposed to
learn standard VAEs from partially observed datasets, these methods fall short
for conditional VAEs. In this work, we propose a method to learn conditional
VAEs from datasets in which auxiliary covariates can contain missing values as
well. The proposed method augments the conditional VAEs with a prior
distribution for the missing covariates and estimates their posterior using
amortised variational inference. At training time, our method marginalises the
uncertainty associated with the missing covariates while simultaneously
maximising the evidence lower bound. We develop computationally efficient
methods to learn CVAEs and GP prior VAEs that are compatible with
mini-batching. Our experiments on simulated datasets as well as on a clinical
trial study show that the proposed method outperforms previous methods in
learning conditional VAEs from non-temporal, temporal, and longitudinal
datasets.
Related papers
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Matching aggregate posteriors in the variational autoencoder [0.5759862457142761]
The variational autoencoder (VAE) is a well-studied, deep, latent-variable model (DLVM)
This paper addresses shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior.
The proposed method is named the emphaggregate variational autoencoder (AVAE) and is built on the theoretical framework of the VAE.
arXiv Detail & Related papers (2023-11-13T19:22:37Z) - Missing Data Imputation and Acquisition with Deep Hierarchical Models
and Hamiltonian Monte Carlo [2.666288135543677]
We present HH-VAEM, a Hierarchical VAE model for mixed-type incomplete data.
Our experiments show that HH-VAEM outperforms existing baselines in the tasks of missing data imputation, supervised learning and outlier identification.
We also present a sampling-based approach for efficiently computing the information gain when missing features are to be acquired with HH-VAEM.
arXiv Detail & Related papers (2022-02-09T17:50:52Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion models for Imputation (CSDI) is a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data.
CSDI improves by 40-70% over existing probabilistic imputation methods on popular performance metrics.
In addition, C reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods.
arXiv Detail & Related papers (2021-07-07T22:20:24Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs)
We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model.
arXiv Detail & Related papers (2021-03-12T10:59:26Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Approximate Cross-Validation for Structured Models [20.79997929155929]
Gold standard evaluation technique is structured cross-validation (CV)
But CV here can be prohibitively slow due to the need to re-run already-expensive learning algorithms many times.
Previous work has shown approximate cross-validation (ACV) methods provide a fast and provably accurate alternative.
arXiv Detail & Related papers (2020-06-23T00:06:03Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.