論文の概要: Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
- arxiv url: http://arxiv.org/abs/2311.07914v2
- Date: Sat, 16 Mar 2024 03:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:02:46.036822
- Title: Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
- Title(参考訳): LLMにおける知識グラフは幻覚を抑制するか? : サーベイ
- Authors: Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, Huan Liu,
- Abstract要約: 現代のLSMは幻覚を引き起こす傾向があり、主にモデル内の知識ギャップから生じる。
この限界に対処するため、研究者は外部知識を取り入れてLLMを強化するために様々な戦略を採用している。
- 参考スコア(独自算出の注目度): 11.471919529192048
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.
- Abstract(参考訳): 現代のLSMは幻覚を引き起こす傾向があり、主にモデル内の知識ギャップから生じる。
この限界に対処するために、研究者は、幻覚を減らし、推論精度を高めることを目的として、外部知識を取り入れてLCMを増強する様々な戦略を採用している。
これらの戦略の中で、知識グラフを外部情報源として活用することは、有望な結果を示してきた。
本研究では,LLMにおけるこれらの知識グラフに基づく増補手法を総合的に検討し,幻覚の緩和効果に着目した。
我々は,これらの手法を3つの集団に分類し,方法論的比較と性能評価を行った。
最後に,これらの技術の動向と課題について考察し,今後の研究の道筋について概説する。
関連論文リスト
- Hallucination of Multimodal Large Language Models: A Survey [40.73148186369018]
マルチモーダル大規模言語モデル(MLLM)は,多モーダルタスクにおいて顕著な進歩と顕著な能力を示した。
これらの有望な発展にもかかわらず、MLLMは視覚的内容と矛盾する出力をしばしば生成する。
本調査は,MLLMにおける幻覚の理解を深め,この分野のさらなる進歩を促すことを目的としている。
論文 参考訳(メタデータ) (2024-04-29T17:59:41Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward [29.81212051279456]
モデル圧縮およびシステムレベルの最適化手法の最近の進歩は、LLM推論を強化することを目的としている。
この調査はこれらの手法の概要を提供し、最近の発展を強調している。
論文 参考訳(メタデータ) (2024-02-02T06:29:34Z) - Knowledge Verification to Nip Hallucination in the Bud [69.79051730580014]
本研究では、アライメントデータに存在する外部知識と基礎LPM内に埋め込まれた固有の知識との矛盾を検証し、最小化することにより、幻覚を緩和する可能性を示す。
本稿では,知識一貫性アライメント(KCA, Knowledge Consistent Alignment)と呼ばれる新しい手法を提案する。
6つのベンチマークで幻覚を減らし, バックボーンとスケールの異なる基礎的LCMを利用することで, KCAの優れた効果を実証した。
論文 参考訳(メタデータ) (2024-01-19T15:39:49Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
大きな言語モデル(LLM)は、人間のようなテキストを書く能力の進歩を続けている。
重要な課題は、事実に見えるが根拠のないコンテンツを生み出すことを幻覚させる傾向にある。
本稿では,LLMにおける幻覚を緩和するために開発された32以上の技術について調査する。
論文 参考訳(メタデータ) (2024-01-02T17:56:30Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions [42.007305423982515]
大型言語モデル(LLM)は幻覚を生じさせ、現実の事実やユーザ入力と矛盾する内容をもたらす。
本調査は, LLM幻覚の分野での最近の進歩について, 徹底的, 徹底的に概観することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [60.67550275379953]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。