Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas
- URL: http://arxiv.org/abs/2311.07931v2
- Date: Sun, 1 Sep 2024 03:02:01 GMT
- Title: Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas
- Authors: Entong Zhao, Zhiyuan Wang, Chengdong He, Ting Fung Jeffrey Poon, Ka Kwan Pak, Yu-Jun Liu, Peng Ren, Xiong-Jun Liu, Gyu-Boong Jo,
- Abstract summary: We create a non-Hermitian band for ultracold fermions in spin-orbit-coupled optical lattices with tunable dissipation.
We observe the real-space dynamical signature of NHSE in real space by monitoring the center of mass motion of atoms.
Our work paves the way for understanding the interplay of quantum statistics with NHSE.
- Score: 8.925244794690562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of non-Hermiticity has expanded the understanding of band topology leading to the emergence of counter-intuitive phenomena. One example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas like curved space, high-order topological phases, and black holes, the realization of this effect in high dimensions remains unexplored. Here, we create a two-dimensional (2D) non-Hermitian topological band for ultracold fermions in spin-orbit-coupled optical lattices with tunable dissipation, which exhibits the NHSE. We first experimentally demonstrate pronounced nonzero spectral winding numbers in the complex energy plane with non-zero dissipation, which establishes the existence of 2D skin effect. Further, we observe the real-space dynamical signature of NHSE in real space by monitoring the center of mass motion of atoms. Finally, we also demonstrate that a pair of exceptional points (EPs) are created in the momentum space, connected by an open-ended bulk Fermi arc, in contrast to closed loops found in Hermitian systems. The associated EPs emerge and shift with increasing dissipation, leading to the formation of the Fermi arc. Our work sets the stage for further investigation into simulating non-Hermitian physics in high dimensions and paves the way for understanding the interplay of quantum statistics with NHSE.
Related papers
- Hidden curved spaces in Bosonic Kitaev model [2.635792095950133]
Quantum matter in curved spaces exhibits remarkable properties unattainable in flat spaces.
We show that two hyperbolic surfaces readily exist in bosonic Kitaev model in the absence of physical distortions.
A finite chemical potential couples these two hyperbolic surfaces, delivering a quantum sensor whose sensitivity grows exponentially with the size of the system.
arXiv Detail & Related papers (2024-08-09T15:40:10Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Recognizing critical lines via entanglement in non-Hermitian systems [0.0]
We show that the non-Hermitian model can be an effective Hamiltonian of a Hermitian XX spin-1/2 with KSEA interaction and a local magnetic field.
We demonstrate that the nearest-neighbor entanglement and its derivative can identify quantum critical lines with the variation of the magnetic field.
arXiv Detail & Related papers (2023-05-15T06:20:56Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Observation of Non-Hermitian Skin Effect and Topology in Ultracold Atoms [7.71285795527128]
The non-Hermitian skin effect (NHSE) underlies a variety of exotic properties that defy conventional wisdom.
NHSE and its intriguing impact on band topology and dynamics have been observed in classical or photonic systems.
We report the experimental realization of a dissipative Aharonov-Bohm chain in the momentum space of a two-component Bose-Einstein condensate.
arXiv Detail & Related papers (2022-01-24T06:28:02Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - High-order series expansion of non-Hermitian quantum spin models [0.0]
We investigate the low-energy physics of non-Hermitian quantum spin models with $PT$-symmetry.
We consider the one-dimensional Ising chain and the two-dimensional toric code in a non-Hermitian staggered field.
arXiv Detail & Related papers (2021-08-12T14:06:40Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.