論文の概要: Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning
- arxiv url: http://arxiv.org/abs/2311.08182v1
- Date: Tue, 14 Nov 2023 14:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 13:47:50.910894
- Title: Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning
- Title(参考訳): 効率的なインストラクションチューニングのための自己進化多元データサンプリング
- Authors: Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, Chang Zhou
- Abstract要約: モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
- 参考スコア(独自算出の注目度): 47.02160072880698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing the instruction-following ability of Large Language Models (LLMs)
primarily demands substantial instruction-tuning datasets. However, the sheer
volume of these imposes a considerable computational burden and annotation
cost. To investigate a label-efficient instruction tuning method that allows
the model itself to actively sample subsets that are equally or even more
effective, we introduce a self-evolving mechanism DiverseEvol. In this process,
a model iteratively augments its training subset to refine its own performance,
without requiring any intervention from humans or more advanced LLMs. The key
to our data sampling technique lies in the enhancement of diversity in the
chosen subsets, as the model selects new data points most distinct from any
existing ones according to its current embedding space. Extensive experiments
across three datasets and benchmarks demonstrate the effectiveness of
DiverseEvol. Our models, trained on less than 8% of the original dataset,
maintain or improve performance compared with finetuning on full data. We also
provide empirical evidence to analyze the importance of diversity in
instruction data and the iterative scheme as opposed to one-time sampling. Our
code is publicly available at https://github.com/OFA-Sys/DiverseEvol.git.
- Abstract(参考訳): 大規模言語モデル(llm)の命令追従能力の向上は、主に命令チューニングデータセットを必要とする。
しかし、これらは膨大な計算負荷と注釈コストを課している。
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできるラベル効率の高い命令チューニング手法を検討するために,自己進化機構であるDiverseEvolを導入する。
このプロセスでは、モデルが反復的にトレーニングサブセットを拡張して、人間やより高度なLCMの介入を必要とせず、自身のパフォーマンスを向上する。
データサンプリングテクニックの鍵は、選択したサブセットの多様性の強化にあります。モデルが既存のデータポイントと最も異なる新しいデータポイントを、現在の埋め込みスペースに従って選択するからです。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
私たちのモデルは、オリジナルのデータセットの8%未満でトレーニングされ、フルデータの微調整と比べて、パフォーマンスを維持または改善します。
また,単回サンプリングとは対照的に,命令データと反復スキームにおける多様性の重要性を分析するための実証的な証拠を提供する。
私たちのコードはhttps://github.com/OFA-Sys/DiverseEvol.git.comで公開されています。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - SSE: Multimodal Semantic Data Selection and Enrichment for Industrial-scale Data Assimilation [29.454948190814765]
近年、人工知能のために収集されたデータは、管理不能な量に成長している。
セマンティックに多様で重要なデータセット部分を選択するためのフレームワークを提案する。
巨大なラベルのないデータプールから意味のある新しいデータを発見することで、さらにセマンティックに強化します。
論文 参考訳(メタデータ) (2024-09-20T19:17:52Z) - Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement [8.509688686402438]
命令データ上での大規模言語モデルの微調整は、事前訓練された知識の強化と命令追従能力の向上に不可欠である。
この作業は問題に対処する: 効果的なトレーニングのために、データの最適なサブセットをどうやって決定できるのか?
提案手法では,k平均クラスタリングを用いて,選択したサブセットが全データセットを効果的に表現できるようにする。
論文 参考訳(メタデータ) (2024-09-17T17:25:31Z) - Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
また, 不均一なサンプル分布であっても, 性能維持が可能であることを示す。
サンプル選択を最適化するために,新しい能動的学習に基づく適応型サンプリング手法を提案する。
提案手法は,最先端のデータセット圧縮手法よりも優れている。
論文 参考訳(メタデータ) (2024-07-09T23:09:18Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。