Ensemble sampling for linear bandits: small ensembles suffice
- URL: http://arxiv.org/abs/2311.08376v4
- Date: Wed, 15 Jan 2025 15:41:09 GMT
- Title: Ensemble sampling for linear bandits: small ensembles suffice
- Authors: David Janz, Alexander E. Litvak, Csaba Szepesvári,
- Abstract summary: We show that ensemble sampling with an ensemble size of order $d log T$ incurs regret at most of the order $(d log T)5/2 sqrtT$.
Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$.
- Score: 75.4286948336835
- License:
- Abstract: We provide the first useful and rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size of order $d \log T$ incurs regret at most of the order $(d \log T)^{5/2} \sqrt{T}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$ -- which defeats the purpose of ensemble sampling -- while obtaining near $\smash{\sqrt{T}}$ order regret. Our result is also the first to allow for infinite action sets.
Related papers
- Improved Regret of Linear Ensemble Sampling [9.410437324336275]
We prove that with an ensemble size logarithmic in $T$, linear ensemble sampling can achieve a frequentist regret bound of $tildemathcalO(d3/2sqrtT)$.
Our contributions advance the theoretical foundation of ensemble sampling, bringing its regret bounds in line with the best known bounds for other randomized exploration algorithms.
arXiv Detail & Related papers (2024-11-06T14:09:11Z) - Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity [14.396304498754688]
We show a novel notion of sparsity that we dub $(lambda, beta)$-sparsity.
In short, there is a set of at most $beta$ groups whose risks at $theta$ all are at least $lambda$ larger than the risks of the other groups.
We show how to get a dimension-free semi-adaptive sample complexity bound with a computationally efficient method.
arXiv Detail & Related papers (2024-10-01T13:45:55Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Federated Linear Bandits with Finite Adversarial Actions [20.1041278044797]
We study a federated linear bandits model, where $M$ clients communicate with a central server to solve a linear contextual bandits problem.
To address the unique challenges of adversarial finite action sets, we propose the FedSupLinUCB algorithm.
We prove that FedSupLinUCB achieves a total regret of $tildeO(sqrtd T)$, where $T$ is the total number of arm pulls from all clients, and $d$ is the ambient dimension of the linear model.
arXiv Detail & Related papers (2023-11-02T03:41:58Z) - First- and Second-Order Bounds for Adversarial Linear Contextual Bandits [22.367921675238318]
We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction.
Since $V_T$ or $L_T*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign.
arXiv Detail & Related papers (2023-05-01T14:00:15Z) - Nearly Minimax Algorithms for Linear Bandits with Shared Representation [86.79657561369397]
We consider the setting where we play $M$ linear bandits with dimension $d$, each for $T$ rounds, and these $M$ bandit tasks share a common $k(ll d)$ dimensional linear representation.
We come up with novel algorithms that achieve $widetildeOleft(dsqrtkMT + kMsqrtTright)$ regret bounds, which matches the known minimax regret lower bound up to logarithmic factors.
arXiv Detail & Related papers (2022-03-29T15:27:13Z) - Corralling a Larger Band of Bandits: A Case Study on Switching Regret
for Linear Bandits [99.86860277006318]
We consider the problem of combining and learning over a set of adversarial algorithms with the goal of adaptively tracking the best one on the fly.
The CORRAL of Agarwal et al. achieves this goal with a regret overhead of order $widetildeO(sqrtd S T)$ where $M$ is the number of base algorithms and $T$ is the time horizon.
Motivated by this issue, we propose a new recipe to corral a larger band of bandit algorithms whose regret overhead has only emphlogarithmic dependence on $M$ as long
arXiv Detail & Related papers (2022-02-12T21:55:44Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.