Fine-tuning Language Models for Factuality
- URL: http://arxiv.org/abs/2311.08401v1
- Date: Tue, 14 Nov 2023 18:59:15 GMT
- Title: Fine-tuning Language Models for Factuality
- Authors: Katherine Tian and Eric Mitchell and Huaxiu Yao and Christopher D.
Manning and Chelsea Finn
- Abstract summary: Large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines.
Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations'
In this work, we fine-tune language models to be more factual, without human labeling.
- Score: 96.5203774943198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fluency and creativity of large pre-trained language models (LLMs) have
led to their widespread use, sometimes even as a replacement for traditional
search engines. Yet language models are prone to making convincing but
factually inaccurate claims, often referred to as 'hallucinations.' These
errors can inadvertently spread misinformation or harmfully perpetuate
misconceptions. Further, manual fact-checking of model responses is a
time-consuming process, making human factuality labels expensive to acquire. In
this work, we fine-tune language models to be more factual, without human
labeling and targeting more open-ended generation settings than past work. We
leverage two key recent innovations in NLP to do so. First, several recent
works have proposed methods for judging the factuality of open-ended text by
measuring consistency with an external knowledge base or simply a large model's
confidence scores. Second, the direct preference optimization algorithm enables
straightforward fine-tuning of language models on objectives other than
supervised imitation, using a preference ranking over possible model responses.
We show that learning from automatically generated factuality preference
rankings, generated either through existing retrieval systems or our novel
retrieval-free approach, significantly improves the factuality (percent of
generated claims that are correct) of Llama-2 on held-out topics compared with
RLHF or decoding strategies targeted at factuality. At 7B scale, compared to
Llama-2-chat, we observe 58% and 40% reduction in factual error rate when
generating biographies and answering medical questions, respectively.
Related papers
- Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models [39.37532848489779]
We propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data.
We show that ENT improves generation quality over standard training and previous soft and hard truncation methods.
arXiv Detail & Related papers (2023-10-02T01:30:27Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - Internet-augmented language models through few-shot prompting for
open-domain question answering [6.573232954655063]
We capitalize on the unique few-shot capabilities offered by large-scale language models to overcome some of their challenges.
We use few-shot prompting to learn to condition language models on information returned from the web using Google Search.
We find that language models conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering.
arXiv Detail & Related papers (2022-03-10T02:24:14Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
Linguistic knowledge is of great benefit to scene text recognition.
How to effectively model linguistic rules in end-to-end deep networks remains a research challenge.
We propose an autonomous, bidirectional and iterative ABINet for scene text recognition.
arXiv Detail & Related papers (2021-03-11T06:47:45Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Cold-start Active Learning through Self-supervised Language Modeling [15.551710499866239]
Active learning aims to reduce annotation costs by choosing the most critical examples to label.
With BERT, we develop a simple strategy based on the masked language modeling loss.
Compared to other baselines, our approach reaches higher accuracy within less sampling iterations and time.
arXiv Detail & Related papers (2020-10-19T14:09:17Z) - Analysis of Predictive Coding Models for Phonemic Representation
Learning in Small Datasets [0.0]
The present study investigates the behaviour of two predictive coding models, Autoregressive Predictive Coding and Contrastive Predictive Coding, in a phoneme discrimination task.
Our experiments show a strong correlation between the autoregressive loss and the phoneme discrimination scores with the two datasets.
The CPC model shows rapid convergence already after one pass over the training data, and, on average, its representations outperform those of APC on both languages.
arXiv Detail & Related papers (2020-07-08T15:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.