Aligning Knowledge Graphs and Language Models for Factual Accuracy
- URL: http://arxiv.org/abs/2507.13411v1
- Date: Thu, 17 Jul 2025 08:15:50 GMT
- Title: Aligning Knowledge Graphs and Language Models for Factual Accuracy
- Authors: Nur A Zarin Nishat, Andrea Coletta, Luigi Bellomarini, Kossi Amouzouvi, Jens Lehmann, Sahar Vahdati,
- Abstract summary: We introduce ALIGNed-LLM, a simple yet effective approach to improve language models' factuality.<n>We use embeddings from a pre-trained Knowledge Graph Embedding (KGE) model, such as TransE, and a trainable projection layer to align entity and text embeddings.
- Score: 7.205708660952737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models like GPT-4, Gemini, and Claude have transformed natural language processing (NLP) tasks such as question answering, dialogue generation, summarization, and so forth; yet their susceptibility to hallucination stands as one of the major challenges. Among numerous approaches to overcome this challenge, integration of Knowledge Graphs (KGs) into language models has emerged as a promising solution as it provides structured, reliable, domain-specific, and up-to-date external information to the language models. In this paper, we introduce ALIGNed-LLM, a simple yet effective approach to improve language models' factuality via a lean strategy to infuse KGs into the latent space of language models inspired by LLaVA where visual and textual information is infused. We use embeddings from a pre-trained Knowledge Graph Embedding (KGE) model, such as TransE, and a trainable projection layer to align entity and text embeddings. This alignment enables the language model to distinguish between similar entities improving factual grounding and reducing hallucination. We tested our approach on three popular questions-answering benchmark datasets alongside language models of varying sizes, showing significant improvement. Furthermore, we applied our approach to a real-world financial use case from a large central bank in Europe, which demands high accuracy and precision, demonstrating a substantial improvement of the LLM answers.
Related papers
- From Hallucinations to Facts: Enhancing Language Models with Curated Knowledge Graphs [20.438680406650967]
This paper addresses language model hallucination by integrating curated knowledge graph (KG) triples to anchor responses in empirical data.<n>We aim to generate both linguistically fluent responses and deeply rooted in factual accuracy and context relevance.
arXiv Detail & Related papers (2024-12-24T20:16:10Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning [4.004641316826348]
We introduce a novel language-image Contrastive Learning method with an Efficient large language model and prompt Fine-Tuning (CLEFT)
Our method demonstrates state-of-the-art performance on multiple chest X-ray and mammography datasets.
The proposed parameter efficient framework can reduce the total trainable model size by 39% and reduce the trainable language model to only 4% compared with the current BERT encoder.
arXiv Detail & Related papers (2024-07-30T17:57:32Z) - Language is All a Graph Needs [33.9836278881785]
We propose InstructGLM (Instruction-finetuned Graph Language Model) with highly scalable prompts based on natural language instructions.
Our method surpasses all GNN baselines on ogbn-arxiv, Cora and PubMed datasets.
arXiv Detail & Related papers (2023-08-14T13:41:09Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
We argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input.
We propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting.
arXiv Detail & Related papers (2022-11-19T03:50:33Z) - TunBERT: Pretrained Contextualized Text Representation for Tunisian
Dialect [0.0]
We investigate the feasibility of training monolingual Transformer-based language models for under represented languages.
We show that the use of noisy web crawled data instead of structured data is more convenient for such non-standardized language.
Our best performing TunBERT model reaches or improves the state-of-the-art in all three downstream tasks.
arXiv Detail & Related papers (2021-11-25T15:49:50Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
We present VidLanKD, a video-language knowledge distillation method for improving language understanding.
We train a multi-modal teacher model on a video-text dataset, and then transfer its knowledge to a student language model with a text dataset.
In our experiments, VidLanKD achieves consistent improvements over text-only language models and vokenization models.
arXiv Detail & Related papers (2021-07-06T15:41:32Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.