論文の概要: Rankitect: Ranking Architecture Search Battling World-class Engineers at
Meta Scale
- arxiv url: http://arxiv.org/abs/2311.08430v1
- Date: Tue, 14 Nov 2023 03:02:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 18:55:49.766395
- Title: Rankitect: Ranking Architecture Search Battling World-class Engineers at
Meta Scale
- Title(参考訳): Rankitect: Meta Scaleで世界クラスのエンジニアに挑戦するアーキテクチャ検索
- Authors: Wei Wen, Kuang-Hung Liu, Igor Fedorov, Xin Zhang, Hang Yin, Weiwei
Chu, Kaveh Hassani, Mengying Sun, Jiang Liu, Xu Wang, Lin Jiang, Yuxin Chen,
Buyun Zhang, Xi Liu, Dehua Cheng, Zhengxing Chen, Guang Zhao, Fangqiu Han,
Jiyan Yang, Yuchen Hao, Liang Xiong, Wen-Yen Chen
- Abstract要約: 本稿では,MetaにおけるランキングシステムのためのNASソフトウェアフレームワークであるRanditectを紹介する。
正規化エントロピー損失とFLOPとの競合トレードオフを達成し,スクラッチから新しいモデルを発見することができる。
- 参考スコア(独自算出の注目度): 35.302195441119665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) has demonstrated its efficacy in computer
vision and potential for ranking systems. However, prior work focused on
academic problems, which are evaluated at small scale under well-controlled
fixed baselines. In industry system, such as ranking system in Meta, it is
unclear whether NAS algorithms from the literature can outperform production
baselines because of: (1) scale - Meta ranking systems serve billions of users,
(2) strong baselines - the baselines are production models optimized by
hundreds to thousands of world-class engineers for years since the rise of deep
learning, (3) dynamic baselines - engineers may have established new and
stronger baselines during NAS search, and (4) efficiency - the search pipeline
must yield results quickly in alignment with the productionization life cycle.
In this paper, we present Rankitect, a NAS software framework for ranking
systems at Meta. Rankitect seeks to build brand new architectures by composing
low level building blocks from scratch. Rankitect implements and improves
state-of-the-art (SOTA) NAS methods for comprehensive and fair comparison under
the same search space, including sampling-based NAS, one-shot NAS, and
Differentiable NAS (DNAS). We evaluate Rankitect by comparing to multiple
production ranking models at Meta. We find that Rankitect can discover new
models from scratch achieving competitive tradeoff between Normalized Entropy
loss and FLOPs. When utilizing search space designed by engineers, Rankitect
can generate better models than engineers, achieving positive offline
evaluation and online A/B test at Meta scale.
- Abstract(参考訳): ニューラルアーキテクチャサーチ(NAS)は、コンピュータビジョンとランキングシステムにその効果を実証している。
しかし、先行研究は、十分に制御された固定ベースラインの下で小規模に評価される学術的な問題に焦点を当てていた。
In industry system, such as ranking system in Meta, it is unclear whether NAS algorithms from the literature can outperform production baselines because of: (1) scale - Meta ranking systems serve billions of users, (2) strong baselines - the baselines are production models optimized by hundreds to thousands of world-class engineers for years since the rise of deep learning, (3) dynamic baselines - engineers may have established new and stronger baselines during NAS search, and (4) efficiency - the search pipeline must yield results quickly in alignment with the productionization life cycle.
本稿では,MetaにおけるランキングシステムのためのNASソフトウェアフレームワークであるRanditectを紹介する。
Rankitectは,低レベルのビルディングブロックをゼロから構成することで,まったく新しいアーキテクチャの構築を目指している。
Rankitectは、サンプリングベースのNAS、ワンショットNAS、微分可能なNAS(DNAS)を含む、同じ検索空間下での包括的かつ公平な比較のために、最先端(SOTA)NASメソッドを実装し、改善する。
我々は,Metaにおける複数の生産ランキングモデルと比較し,Randitectを評価する。
正規化エントロピー損失とFLOPとの競合トレードオフを達成し,スクラッチから新しいモデルを発見することができる。
エンジニアが設計した検索スペースを利用する場合、Randitectはエンジニアよりも優れたモデルを生成し、肯定的なオフライン評価とMetaスケールでのオンラインA/Bテストを達成することができる。
関連論文リスト
- NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
シームズネットワークは、自己教師付き視覚表現学習(SSL)を実現するための最も傾向のある方法の1つである。
NASiamは、初めて微分可能なNASを使用して、多層パーセプトロンプロジェクタと予測器(エンコーダ/予測器ペア)を改善する新しいアプローチである。
NASiamは、小規模(CIFAR-10/CIFAR-100)と大規模(画像Net)画像分類データセットの両方で競合性能を達成し、わずか数GPU時間しかかからない。
論文 参考訳(メタデータ) (2023-01-31T19:48:37Z) - DAS: Neural Architecture Search via Distinguishing Activation Score [21.711985665733653]
ニューラルアーキテクチャサーチ(NAS)は、特定のタスクに対して優れたアーキテクチャを探索する自動手法である。
Darts-training-bench(DTB)と呼ばれるデータセットを提案し、既存のデータセットでアーキテクチャのトレーニング状態が存在しないギャップを埋める。
提案手法は,NAS-Bench-101,Network Design Spaces,提案DBBの1.04$times$ - 1.56$times$の改善を実現している。
論文 参考訳(メタデータ) (2022-12-23T04:02:46Z) - Neural Architecture Ranker [19.21631623578852]
アーキテクチャランキングは、最近、ニューラルネットワークサーチ(NAS)のための効率的で効果的なパフォーマンス予測器を設計することを提唱されている。
成層層化にインスパイアされた予測器,すなわちニューラルランサー(NAR)を提案する。
論文 参考訳(メタデータ) (2022-01-30T04:54:59Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
近年,微分可能なアーキテクチャ探索 (DARTS) が注目されている。
本稿では,アーキテクチャ重みをガウス分布に緩和することにより,ニューラルネットワーク探索を分布学習問題として定式化する。
ベイズ主義の原理から異なるNASがいかに恩恵を受け、探索を強化し、安定性を向上するかを実証する。
論文 参考訳(メタデータ) (2021-11-25T18:13:42Z) - Across-Task Neural Architecture Search via Meta Learning [1.225795556154044]
Adequate labeled data and expensive compute resources is the prequisites for the success of Neural Architecture search (NAS)
限られた計算リソースとデータを持つメタ学習シナリオにNASを適用するのは難しい。
本稿では、勾配に基づくメタラーニングとEAに基づくNASを組み合わせることで、タスク間ニューラルネットワーク探索(AT-NAS)を提案する。
論文 参考訳(メタデータ) (2021-10-12T09:07:33Z) - RankNAS: Efficient Neural Architecture Search by Pairwise Ranking [30.890612901949307]
本稿では,ペアランキングを用いたパフォーマンスランキング手法(RankNAS)を提案する。
トレーニングの例をはるかに少なくして、効率的なアーキテクチャ検索を可能にする。
最先端のNASシステムよりも桁違いに高速でありながら、高性能なアーキテクチャを設計することができる。
論文 参考訳(メタデータ) (2021-09-15T15:43:08Z) - AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision
of Weight Sharing [6.171090327531059]
空間から最高のアーキテクチャを選択するためのLearning to Rank手法を紹介します。
また,スーパーネットから得られた弱いラベルのアーキテクチャ表現を事前学習することで,重み共有から弱い管理を活用することを提案する。
NASベンチマークと大規模検索空間を用いた実験により,提案手法はSOTAよりも検索コストが大幅に削減された。
論文 参考訳(メタデータ) (2021-08-06T08:31:42Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
最近の予測器ベースのnasアプローチは、アーキテクチャとパフォーマンスのペアをサンプリングし、プロキシの精度を予測するという2つの重要なステップで問題を解決しようとする。
私たちはこのパラダイムを、アーキテクチャ空間全体をカバーする複雑な予測子から、ハイパフォーマンスなサブスペースへと徐々に進む弱い予測子へとシフトさせます。
NAS-Bench-101 および NAS-Bench-201 で最高の性能のアーキテクチャを見つけるためのサンプルを少なくし、NASNet 検索空間における最先端の ImageNet パフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-21T01:58:43Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
本稿では, ディープステレオマッチングのための最初のエンドツーエンド階層型NASフレームワークを提案する。
我々のフレームワークは、タスク固有の人間の知識をニューラルアーキテクチャ検索フレームワークに組み込んでいる。
KITTI stereo 2012、2015、Middleburyベンチマークで1位、SceneFlowデータセットで1位にランクインしている。
論文 参考訳(メタデータ) (2020-10-26T11:57:37Z) - NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search [55.12928953187342]
我々は,NAS-Bench-101:NAS-Bench-201の拡張を提案する。
NAS-Bench-201は固定探索空間を持ち、最新のNASアルゴリズムのほとんどすべてに統一されたベンチマークを提供する。
我々はNASアルゴリズムの新しい設計にインスピレーションを与えることができる微粒化損失や精度などの付加的な診断情報を提供する。
論文 参考訳(メタデータ) (2020-01-02T05:28:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。