Rankitect: Ranking Architecture Search Battling World-class Engineers at
Meta Scale
- URL: http://arxiv.org/abs/2311.08430v1
- Date: Tue, 14 Nov 2023 03:02:02 GMT
- Title: Rankitect: Ranking Architecture Search Battling World-class Engineers at
Meta Scale
- Authors: Wei Wen, Kuang-Hung Liu, Igor Fedorov, Xin Zhang, Hang Yin, Weiwei
Chu, Kaveh Hassani, Mengying Sun, Jiang Liu, Xu Wang, Lin Jiang, Yuxin Chen,
Buyun Zhang, Xi Liu, Dehua Cheng, Zhengxing Chen, Guang Zhao, Fangqiu Han,
Jiyan Yang, Yuchen Hao, Liang Xiong, Wen-Yen Chen
- Abstract summary: We present Rankitect, a NAS software framework for ranking systems at Meta.
We find that Rankitect can discover new models from scratch achieving competitive tradeoff between Normalized Entropy loss and FLOPs.
- Score: 35.302195441119665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) has demonstrated its efficacy in computer
vision and potential for ranking systems. However, prior work focused on
academic problems, which are evaluated at small scale under well-controlled
fixed baselines. In industry system, such as ranking system in Meta, it is
unclear whether NAS algorithms from the literature can outperform production
baselines because of: (1) scale - Meta ranking systems serve billions of users,
(2) strong baselines - the baselines are production models optimized by
hundreds to thousands of world-class engineers for years since the rise of deep
learning, (3) dynamic baselines - engineers may have established new and
stronger baselines during NAS search, and (4) efficiency - the search pipeline
must yield results quickly in alignment with the productionization life cycle.
In this paper, we present Rankitect, a NAS software framework for ranking
systems at Meta. Rankitect seeks to build brand new architectures by composing
low level building blocks from scratch. Rankitect implements and improves
state-of-the-art (SOTA) NAS methods for comprehensive and fair comparison under
the same search space, including sampling-based NAS, one-shot NAS, and
Differentiable NAS (DNAS). We evaluate Rankitect by comparing to multiple
production ranking models at Meta. We find that Rankitect can discover new
models from scratch achieving competitive tradeoff between Normalized Entropy
loss and FLOPs. When utilizing search space designed by engineers, Rankitect
can generate better models than engineers, achieving positive offline
evaluation and online A/B test at Meta scale.
Related papers
- NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - DAS: Neural Architecture Search via Distinguishing Activation Score [21.711985665733653]
Neural Architecture Search (NAS) is an automatic technique that can search for well-performed architectures for a specific task.
We propose a dataset called Darts-training-bench (DTB), which fills the gap that no training states of architecture in existing datasets.
Our proposed method has 1.04$times$ - 1.56$times$ improvements on NAS-Bench-101, Network Design Spaces, and the proposed DTB.
arXiv Detail & Related papers (2022-12-23T04:02:46Z) - Neural Architecture Ranker [19.21631623578852]
Architecture ranking has recently been advocated to design an efficient and effective performance predictor for Neural Architecture Search (NAS)
Inspired by the stratification stratification, we propose a predictor, namely Neural Ranker (NAR)
arXiv Detail & Related papers (2022-01-30T04:54:59Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - Across-Task Neural Architecture Search via Meta Learning [1.225795556154044]
Adequate labeled data and expensive compute resources are the prerequisites for the success of neural architecture search(NAS)
It is challenging to apply NAS in meta-learning scenarios with limited compute resources and data.
In this paper, an across-task neural architecture search (AT-NAS) is proposed to address the problem through combining gradient-based meta-learning with EA-based NAS.
arXiv Detail & Related papers (2021-10-12T09:07:33Z) - RankNAS: Efficient Neural Architecture Search by Pairwise Ranking [30.890612901949307]
We propose a performance ranking method (RankNAS) via pairwise ranking.
It enables efficient architecture search using much fewer training examples.
It can design high-performance architectures while being orders of magnitude faster than state-of-the-art NAS systems.
arXiv Detail & Related papers (2021-09-15T15:43:08Z) - AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision
of Weight Sharing [6.171090327531059]
We introduce Learning to Rank methods to select the best (ace) architectures from a space.
We also propose to leverage weak supervision from weight sharing by pretraining architecture representation on weak labels obtained from the super-net.
Experiments on NAS benchmarks and large-scale search spaces demonstrate that our approach outperforms SOTA with a significantly reduced search cost.
arXiv Detail & Related papers (2021-08-06T08:31:42Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
We propose the first end-to-end hierarchical NAS framework for deep stereo matching.
Our framework incorporates task-specific human knowledge into the neural architecture search framework.
It is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset.
arXiv Detail & Related papers (2020-10-26T11:57:37Z) - NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search [55.12928953187342]
We propose an extension to NAS-Bench-101: NAS-Bench-201 with a different search space, results on multiple datasets, and more diagnostic information.
NAS-Bench-201 has a fixed search space and provides a unified benchmark for almost any up-to-date NAS algorithms.
We provide additional diagnostic information such as fine-grained loss and accuracy, which can give inspirations to new designs of NAS algorithms.
arXiv Detail & Related papers (2020-01-02T05:28:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.