Electronic excitation spectra of molecular hydrogen in Phase I from Quantum Monte Carlo and Many-Body perturbation methods
- URL: http://arxiv.org/abs/2311.08506v2
- Date: Mon, 20 May 2024 10:10:45 GMT
- Title: Electronic excitation spectra of molecular hydrogen in Phase I from Quantum Monte Carlo and Many-Body perturbation methods
- Authors: Vitaly Gorelov, Markus Holzmann, David M. Ceperley, Carlo Pierleoni,
- Abstract summary: We study the electronic excitation spectra in solid molecular hydrogen (phase I) at ambient temperature and 5-90 GPa pressures.
In this range, the system changes from a wide gap molecular insulator to a semiconductor, altering the nature of the excitations from localized to delocalized.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the electronic excitation spectra in solid molecular hydrogen (phase I) at ambient temperature and 5-90 GPa pressures using Quantum Monte Carlo methods and Many-Body Perturbation Theory. In this range, the system changes from a wide gap molecular insulator to a semiconductor, altering the nature of the excitations from localized to delocalized. Computed gaps and spectra agree with experiments, proving the ability to predict accurately band gaps of many-body systems in presence of nuclear quantum and thermal effects.
Related papers
- Cavity-enhanced spectroscopy in the deep cryogenic regime -- new hydrogen technologies for quantum sensing [0.0]
We demonstrate a cavity-enhanced spectrometer fully operating in the deep cryogenic regime down to 4 K.
This instrument enables a variety of fundamental and practical applications.
arXiv Detail & Related papers (2025-02-18T10:11:44Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - High-resolution vibronic spectroscopy of a single molecule embedded in a
crystal [0.0]
Vibrational levels of the electronic ground states in dye molecules have not been previously explored at high resolution in solid matrices.
We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene.
arXiv Detail & Related papers (2021-12-09T09:56:05Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots [0.8911822441893501]
We introduce biexciton heralded spectroscopy, enabled by a single-photon avalanche diode array based spectrometer.
This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature.
We uncover correlations hitherto masked in ensembles, of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential.
arXiv Detail & Related papers (2021-08-01T00:41:57Z) - The chemical effect goes resonant -- a full quantum mechanical approach
on TERS [0.0]
Experimental evidence of unexpectedly high spatial resolution of tip-enhanced Raman scattering (TERS) has been demonstrated.
We consider a surface-immobilized tin(II) phthalocyanine molecule as the molecular system, which is minutely scanned by a plasmonic tip.
Our computational approach reveals that unique - non-resonant and resonant - chemical interactions among the tip and the molecule significantly alter the TERS spectra.
arXiv Detail & Related papers (2021-06-21T12:53:08Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.