Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots
- URL: http://arxiv.org/abs/2108.00345v1
- Date: Sun, 1 Aug 2021 00:41:57 GMT
- Title: Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots
- Authors: Gur Lubin, Ron Tenne, Arin Can Ulku, Ivan Michel Antolovic, Samuel
Burri, Sean Karg, Venkata Jayasurya Yallapragada, Claudio Bruschini, Edoardo
Charbon and Dan Oron
- Abstract summary: We introduce biexciton heralded spectroscopy, enabled by a single-photon avalanche diode array based spectrometer.
This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature.
We uncover correlations hitherto masked in ensembles, of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential.
- Score: 0.8911822441893501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiply-excited states in semiconductor quantum dots feature intriguing
physics and play a crucial role in nanocrystal-based technologies. While
photoluminescence provides a natural probe to investigate these states, room
temperature single-particle spectroscopy of their emission has so far proved
elusive due to the temporal and spectral overlap with emission from the
singly-excited and charged states. Here we introduce biexciton heralded
spectroscopy, enabled by a single-photon avalanche diode array based
spectrometer. This allows us to directly observe biexciton-exciton emission
cascades and measure the biexciton binding energy of single quantum dots at
room temperature, even though it is well below the scale of thermal broadening
and spectral diffusion. Furthermore, we uncover correlations hitherto masked in
ensembles, of the biexciton binding energy with both charge-carrier confinement
and fluctuations of the local electrostatic potential. Heralded spectroscopy
has the potential of greatly extending our understanding of charge-carrier
dynamics in multielectron systems and of parallelization of quantum optics
protocols.
Related papers
- Coherent spectroscopy of a single Mn-doped InGaAs quantum dot [0.0]
Doping a self-assembled InGaAs/GaAs quantum dot with a single Mn atom provides a quantum system with discrete energy levels and original spin-dependent optical selection rules.
We show evidence for quantum interference within the V-like system and assess the pure dephasing rate between the corresponding spin states.
arXiv Detail & Related papers (2024-10-25T13:03:40Z) - Check-probe spectroscopy of lifetime-limited emitters in bulk-grown silicon carbide [0.4711628883579317]
We introduce a high-bandwidth check-probe' scheme to measure (laser-induced) spectral diffusion and ionisation rates.
We demonstrate these methods on single V2 centers in commercially available bulk-grown 4H-silicon carbide.
These results advance our understanding of spectral diffusion of quantum emitters in semiconductor materials, and may have applications for studying charge dynamics across other platforms.
arXiv Detail & Related papers (2024-09-19T18:00:03Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Quantum coherence and interference of a single moir\'e exciton in
nano-fabricated twisted semiconductor heterobilayers [7.407499080938729]
Moir'e potential acts as periodic quantum confinement for optically generated exciton, generating spatially ordered quantum system.
We have demonstrated a new method to realize the optical observation of quantum coherence and interference of a single moir'e exciton.
The observed quantum coherence and interference of moir'e exciton will facilitate potential application toward quantum technologies based on moir'e quantum systems.
arXiv Detail & Related papers (2023-09-06T10:12:09Z) - Plasmon mediated coherent population oscillations in molecular
aggregates [2.2723634099641004]
coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials.
Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array.
arXiv Detail & Related papers (2023-07-27T08:57:46Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.