Are You Sure? Challenging LLMs Leads to Performance Drops in The
FlipFlop Experiment
- URL: http://arxiv.org/abs/2311.08596v2
- Date: Wed, 21 Feb 2024 18:15:47 GMT
- Title: Are You Sure? Challenging LLMs Leads to Performance Drops in The
FlipFlop Experiment
- Authors: Philippe Laban and Lidiya Murakhovs'ka and Caiming Xiong and
Chien-Sheng Wu
- Abstract summary: We propose the FlipFlop experiment to study the multi-turn behavior of Large Language Models (LLMs)
We show that models flip their answers on average 46% of the time and that all models see a deterioration of accuracy between their first and final prediction, with an average drop of 17% (the FlipFlop effect)
We conduct finetuning experiments on an open-source LLM and find that finetuning on synthetically created data can mitigate - reducing performance deterioration by 60% - but not resolve sycophantic behavior entirely.
- Score: 82.60594940370919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interactive nature of Large Language Models (LLMs) theoretically allows
models to refine and improve their answers, yet systematic analysis of the
multi-turn behavior of LLMs remains limited. In this paper, we propose the
FlipFlop experiment: in the first round of the conversation, an LLM completes a
classification task. In a second round, the LLM is challenged with a follow-up
phrase like "Are you sure?", offering an opportunity for the model to reflect
on its initial answer, and decide whether to confirm or flip its answer. A
systematic study of ten LLMs on seven classification tasks reveals that models
flip their answers on average 46% of the time and that all models see a
deterioration of accuracy between their first and final prediction, with an
average drop of 17% (the FlipFlop effect). We conduct finetuning experiments on
an open-source LLM and find that finetuning on synthetically created data can
mitigate - reducing performance deterioration by 60% - but not resolve
sycophantic behavior entirely. The FlipFlop experiment illustrates the
universality of sycophantic behavior in LLMs and provides a robust framework to
analyze model behavior and evaluate future models.
Related papers
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.
In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Verbosity $\neq$ Veracity: Demystify Verbosity Compensation Behavior of Large Language Models [8.846200844870767]
We discover an understudied type of undesirable behavior of Large Language Models (LLMs)
We term Verbosity Compensation (VC) as similar to the hesitation behavior of humans under uncertainty.
We propose a simple yet effective cascade algorithm that replaces verbose responses with the other model-generated responses.
arXiv Detail & Related papers (2024-11-12T15:15:20Z) - Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Will LLMs Replace the Encoder-Only Models in Temporal Relation Classification? [2.1861408994125253]
Large Language Models (LLM) have recently shown promising performance in temporal reasoning tasks.
Recent studies have tested the LLMs' performance in detecting temporal relations of closed-source models only.
arXiv Detail & Related papers (2024-10-14T13:10:45Z) - Language Models can Evaluate Themselves via Probability Discrepancy [38.54454263880133]
We propose a new self-evaluation method ProbDiff for assessing the efficacy of various Large Language Models (LLMs)
It uniquely utilizes the LLMs being tested to compute the probability discrepancy between the initial response and its revised versions.
Our findings reveal that ProbDiff achieves results on par with those obtained from evaluations based on GPT-4.
arXiv Detail & Related papers (2024-05-17T03:50:28Z) - Large Language Models Show Human-like Social Desirability Biases in Survey Responses [12.767606361552684]
We show that Large Language Models (LLMs) skew their scores towards the desirable ends of trait dimensions when personality evaluation is inferred.
This bias exists in all tested models, including GPT-4/3.5, Claude 3, Llama 3, and PaLM-2.
reverse-coding all the questions decreases bias levels but does not eliminate them, suggesting that this effect cannot be attributed to acquiescence bias.
arXiv Detail & Related papers (2024-05-09T19:02:53Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
arXiv Detail & Related papers (2024-02-18T03:10:39Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.