Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement
- URL: http://arxiv.org/abs/2402.11436v2
- Date: Tue, 18 Jun 2024 04:41:07 GMT
- Title: Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement
- Authors: Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, William Yang Wang,
- Abstract summary: Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
- Score: 75.7148545929689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM's bias in evaluating their own output. In this paper, we formally define LLM's self-bias - the tendency to favor its own generation - using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias.
Related papers
- Self-Preference Bias in LLM-as-a-Judge [13.880151307013321]
We introduce a novel metric to measure the self-preference bias in large language models (LLMs)
Our results show GPT-4 exhibits a significant degree of self-preference bias.
This suggests that the essence of the bias lies in perplexity and that the self-preference bias exists because LLMs prefer texts more familiar to them.
arXiv Detail & Related papers (2024-10-29T07:42:18Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - LLM Evaluators Recognize and Favor Their Own Generations [33.672365386365236]
We investigate if self-recognition capability contributes to self-preference.
We find a linear correlation between self-recognition capability and the strength of self-preference bias.
We discuss how self-recognition can interfere with unbiased evaluations and AI safety more generally.
arXiv Detail & Related papers (2024-04-15T16:49:59Z) - Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs [30.179703001666173]
Factuality issue is a critical concern for Large Language Models (LLMs)
We propose GraphEval to evaluate an LLM's performance using a substantially large test dataset.
Test dataset is retrieved from a large knowledge graph with more than 10 million facts without expensive human efforts.
arXiv Detail & Related papers (2024-04-01T06:01:17Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
We propose a self-supervised position debiasing (SOD) framework to mitigate position bias for large language models (LLMs)
Experiments on eight datasets and five tasks show that SOD consistently outperforms existing methods in mitigating three types of position biases.
arXiv Detail & Related papers (2024-01-02T14:12:41Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Verbosity Bias in Preference Labeling by Large Language Models [10.242500241407466]
We examine the biases that come along with evaluating Large Language Models (LLMs)
We take a closer look into verbosity bias -- a bias where LLMs sometimes prefer more verbose answers even if they have similar qualities.
arXiv Detail & Related papers (2023-10-16T05:19:02Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Self-Refine: Iterative Refinement with Self-Feedback [62.78755306241981]
Self-Refine is an approach for improving initial outputs from large language models (LLMs) through iterative feedback and refinement.
We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs.
Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
arXiv Detail & Related papers (2023-03-30T18:30:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.