論文の概要: Navigating the Ocean of Biases: Political Bias Attribution in Language
Models via Causal Structures
- arxiv url: http://arxiv.org/abs/2311.08605v1
- Date: Wed, 15 Nov 2023 00:02:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 17:54:01.977136
- Title: Navigating the Ocean of Biases: Political Bias Attribution in Language
Models via Causal Structures
- Title(参考訳): バイアスの海をナビゲートする:因果構造による言語モデルにおける政治的バイアスの帰属
- Authors: David F. Jenny, Yann Billeter, Mrinmaya Sachan, Bernhard Sch\"olkopf
and Zhijing Jin
- Abstract要約: 我々は、LLMの価値観を批判したり、検証したりせず、どのようにして「良い議論」を解釈し、偏見づけるかを見極めることを目的としている。
本研究では,活動依存ネットワーク(ADN)を用いてLCMの暗黙的基準を抽出する。
人-AIアライメントとバイアス緩和について,本研究の結果について考察した。
- 参考スコア(独自算出の注目度): 58.059631072902356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has sparked intense
debate regarding their ability to perceive and interpret complex
socio-political landscapes. In this study, we undertake an exploration of
decision-making processes and inherent biases within LLMs, exemplified by
ChatGPT, specifically contextualizing our analysis within political debates. We
aim not to critique or validate LLMs' values, but rather to discern how they
interpret and adjudicate "good arguments." By applying Activity Dependency
Networks (ADNs), we extract the LLMs' implicit criteria for such assessments
and illustrate how normative values influence these perceptions. We discuss the
consequences of our findings for human-AI alignment and bias mitigation. Our
code and data at https://github.com/david-jenny/LLM-Political-Study.
- Abstract(参考訳): 大規模言語モデル(llm)の急速な発展は、複雑な社会・政治の風景を知覚し解釈する能力に関する激しい議論を引き起こした。
本研究では、ChatGPTによって実証されたLCMにおける意思決定プロセスと固有のバイアスの探索、特に政治討論における分析の文脈化を行う。
我々は、LLMの価値観を批判したり、検証したりするのではなく、どのようにして「良い議論」を解釈し、偏見づけるかを見極めることを目的としている。
活動依存ネットワーク(ADN)を適用して,これらの評価に対するLCMの暗黙的基準を抽出し,規範的価値がこれらの知覚にどのように影響するかを説明する。
我々は、人間とaiの連携とバイアス緩和に関する調査結果の結果について論じる。
コードとデータはhttps://github.com/david-jenny/LLM-Political-Study.comにある。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ? [22.0383367888756]
大規模言語モデル(LLM)は、トレーニングデータとアライメントプロセスからバイアスを受け継ぎ、微妙な方法で応答に影響を与える。
LLMの2つのインスタンスが自己議論を行う新しいアプローチを導入し、反対の視点でモデルの中立バージョンを説得する。
我々は、モデルがどのようにしっかりとバイアスを保ち、誤った情報を強化するか、有害な視点に移行するかを評価する。
論文 参考訳(メタデータ) (2024-10-17T13:06:02Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
大規模言語モデル(LLM)が,その世代を理論的にどのように説明するかを考察する。
提案手法は帰属に基づく説明よりも「偽り」が少ないことを示す。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - Interpreting Bias in Large Language Models: A Feature-Based Approach [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクで顕著なパフォーマンスを示した。
本稿では, 特徴量に基づく新しい解析手法により, LLM内のバイアスの伝播について検討する。
論文 参考訳(メタデータ) (2024-06-18T07:28:15Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。