Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models
- URL: http://arxiv.org/abs/2311.08692v1
- Date: Wed, 15 Nov 2023 04:40:43 GMT
- Title: Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models
- Authors: Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang
Zhou, Jingren Zhou
- Abstract summary: We propose Zooter, a reward-guided routing method distilling rewards on training queries to train a routing function.
We evaluate Zooter on a comprehensive benchmark collection with 26 subsets on different domains and tasks.
- Score: 69.51130760097818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complementary potential of Large Language Models (LLM) assumes
off-the-shelf LLMs have heterogeneous expertise in a wide range of domains and
tasks so that an ensemble of LLMs can achieve consistently better performance.
Existing ensemble methods for LLMs mainly focus on reward model ranking of
outputs, leading to significant computation overhead. To combat this issue, we
revisit the complementary potential of LLMs and further elaborate it by mining
latent expertise with off-the-shelf reward models. We propose Zooter, a
reward-guided routing method distilling rewards on training queries to train a
routing function, which can precisely distribute each query to the LLM with
expertise about it. We also integrate a tag-based label enhancement to mitigate
noise from uncertainty when using rewards as silver supervision. Zooter shows
computation efficiency in inference as it introduces only a minor computation
overhead of a routing function compared with reward model ranking methods. We
evaluate Zooter on a comprehensive benchmark collection with 26 subsets on
different domains and tasks. Zooter outperforms the best single model on
average and ranks first on 44% of tasks, even surpassing multiple reward model
ranking methods.
Related papers
- Your Mixture-of-Experts LLM Is Secretly an Embedding Model For Free [21.59456761618456]
Large language models (LLMs) excel on generation tasks, their decoder-only architecture often limits their potential as embedding models if no further representation finetuning is applied.
Our study shows that the expert routers in MoE LLMs can serve as an off-the-shelf embedding model with promising performance on a diverse class of embedding-focused tasks.
arXiv Detail & Related papers (2024-10-14T17:59:44Z) - SkillAggregation: Reference-free LLM-Dependent Aggregation [14.46141987797362]
Large Language Models (LLMs) are increasingly used to assess NLP tasks.
Recent work suggests using multiple LLMs as judges yields improved performance.
This work focuses on aggregating predictions from multiple systems where no reference labels are available.
arXiv Detail & Related papers (2024-10-14T07:13:47Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
Reinforcement Learning (RL) suffers from sample inefficiency in reward domains, and the problem is further pronounced in case of transitions.
To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster.
arXiv Detail & Related papers (2024-05-24T03:53:57Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
Large language models (LLMs) exhibit complementary strengths in various tasks, motivating the research of LLM ensembling.
We propose a training-free ensemble framework DeePEn, fusing the informative probability distributions yielded by different LLMs at each decoding step.
arXiv Detail & Related papers (2024-04-19T08:52:22Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agents [56.104476412839944]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.