LLM-Powered Preference Elicitation in Combinatorial Assignment
- URL: http://arxiv.org/abs/2502.10308v1
- Date: Fri, 14 Feb 2025 17:12:20 GMT
- Title: LLM-Powered Preference Elicitation in Combinatorial Assignment
- Authors: Ermis Soumalias, Yanchen Jiang, Kehang Zhu, Michael Curry, Sven Seuken, David C. Parkes,
- Abstract summary: We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.<n>We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.<n>We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
- Score: 17.367432304040662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in combinatorial assignment. While traditional PE methods rely on iterative queries to capture preferences, LLMs offer a one-shot alternative with reduced human effort. We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes. Our framework handles the novel challenges introduced by LLMs, such as response variability and increased computational costs. We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain, and we investigate the model capabilities required for success. We find that our approach improves allocative efficiency by up to 20%, and these results are robust across different LLMs and to differences in quality and accuracy of reporting.
Related papers
- Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks [0.0]
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs)
We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs.
arXiv Detail & Related papers (2025-04-24T15:55:10Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.
We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Dynamic Ensemble Reasoning for LLM Experts [35.774197263383996]
We propose a Dynamic Ensemble Reasoning paradigm, called DER, to integrate the strengths of multiple LLM experts conditioned on dynamic inputs.<n>Our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-12-10T12:05:56Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
In-context learning of large language models (LLMs) makes predictions only based on instructions augmented with a few examples.
Existing example selection methods for ICL utilize sparse or dense retrievers and derive effective performance.
We propose our policy-based reinforcement learning framework for example selection (RLS), which consists of a language model (LM) selector and an LLM generator.
arXiv Detail & Related papers (2024-08-23T12:32:12Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have seen widespread adoption due to their remarkable performance across various applications.<n>These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.<n>We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
We propose Zooter, a reward-guided routing method distilling rewards on training queries to train a routing function.
We evaluate Zooter on a comprehensive benchmark collection with 26 subsets on different domains and tasks.
arXiv Detail & Related papers (2023-11-15T04:40:43Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.