HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection
- URL: http://arxiv.org/abs/2311.08786v1
- Date: Wed, 15 Nov 2023 08:59:02 GMT
- Title: HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection
- Authors: Dongxin Chen, Mingrui Zhu, Nannan Wang, Xinbo Gao
- Abstract summary: Face de-identification is a practical way to solve the identity protection problem.
The existing facial de-identification methods have revealed several problems.
We present a High-Fidelity and Occlusion-Robust De-identification (HFORD) method to deal with these issues.
- Score: 60.63915939982923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the popularity of smart devices and the development of computer vision
technology, concerns about face privacy protection are growing. The face
de-identification technique is a practical way to solve the identity protection
problem. The existing facial de-identification methods have revealed several
problems, including the impact on the realism of anonymized results when faced
with occlusions and the inability to maintain identity-irrelevant details in
anonymized results. We present a High-Fidelity and Occlusion-Robust
De-identification (HFORD) method to deal with these issues. This approach can
disentangle identities and attributes while preserving image-specific details
such as background, facial features (e.g., wrinkles), and lighting, even in
occluded scenes. To disentangle the latent codes in the GAN inversion space, we
introduce an Identity Disentanglement Module (IDM). This module selects the
latent codes that are closely related to the identity. It further separates the
latent codes into identity-related codes and attribute-related codes, enabling
the network to preserve attributes while only modifying the identity. To ensure
the preservation of image details and enhance the network's robustness to
occlusions, we propose an Attribute Retention Module (ARM). This module
adaptively preserves identity-irrelevant details and facial occlusions and
blends them into the generated results in a modulated manner. Extensive
experiments show that our method has higher quality, better detail fidelity,
and stronger occlusion robustness than other face de-identification methods.
Related papers
- ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
Identity-preserving text-to-image generation (ID-T2I) has received significant attention due to its wide range of application scenarios like AI portrait and advertising.
We present textbfID-Aligner, a general feedback learning framework to enhance ID-T2I performance.
arXiv Detail & Related papers (2024-04-23T18:41:56Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - StyleID: Identity Disentanglement for Anonymizing Faces [4.048444203617942]
The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID.
As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement.
StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.
arXiv Detail & Related papers (2022-12-28T12:04:24Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
We present a new single-stage method for subject face swapping and identity transfer, named FaceDancer.
We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR)
arXiv Detail & Related papers (2022-10-19T11:31:38Z) - FICGAN: Facial Identity Controllable GAN for De-identification [34.38379234653657]
We present Facial Identity Controllable GAN (FICGAN) for generating high-quality de-identified face images with ensured privacy protection.
Based on the analysis, we develop FICGAN, an autoencoder-based conditional generative model that learns to disentangle the identity attributes from non-identity attributes on a face image.
arXiv Detail & Related papers (2021-10-02T07:09:27Z) - A Systematical Solution for Face De-identification [6.244117712209321]
In different tasks, people have various requirements for face de-identification (De-ID)
We propose a systematical solution compatible for these De-ID operations.
Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.
arXiv Detail & Related papers (2021-07-19T02:02:51Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.