iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
- URL: http://arxiv.org/abs/2501.04390v2
- Date: Thu, 16 Jan 2025 07:58:06 GMT
- Title: iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
- Authors: Lin Yuan, Kai Liang, Xiong Li, Tao Wu, Nannan Wang, Xinbo Gao,
- Abstract summary: Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy.
This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.
- Score: 51.123936665445356
- License:
- Abstract: Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy. Traditional methods like blurring and pixelation can largely remove identifying features, but these techniques significantly degrade image quality and are vulnerable to deep reconstruction attacks. Generative models have emerged as a promising solution for anonymizing faces while preserving a natural appearance. However, many still face limitations in visual quality and often overlook the potential to recover the original face from the anonymized version, which can be valuable in specific contexts such as image forensics. This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform. The framework features a disentanglement architecture coupled with a secure flow-based model: the former decouples identity information from non-identifying attributes, while the latter transforms the decoupled identity into an anonymized version in an invertible manner controlled by a secret key. The anonymized face can then be reconstructed based on a pre-trained StyleGAN that ensures high image quality and realistic facial details. Recovery of the original face (aka de-anonymization) is possible upon the availability of the matching secret, by inverting the anonymization process based on the same set of model parameters. Furthermore, a dedicated secret-key mechanism along with a dual-phase training strategy is devised to ensure the desired properties of face anonymization. Qualitative and quantitative experiments demonstrate the superiority of the proposed approach in anonymity, reversibility, security, diversity, and interpretability over competing methods.
Related papers
- Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models [54.88064975480573]
The task of privacy-preserving face recognition (PPFR) currently faces two major unsolved challenges.
By disrupting global features while enhancing local features, we achieve effective recognition even in black-box environments.
Our method achieves an average recognition accuracy of 94.21% on black-box models, outperforming existing methods in both privacy protection and anti-reconstruction capabilities.
arXiv Detail & Related papers (2024-12-11T10:49:15Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation [56.46932751058042]
We train a learnable prompt prefix for text-to-image diffusion models, which forces the model to generate anonymized facial identities.
Experiments demonstrate the successful anonymization performance of APL, which anonymizes any specific individuals without compromising the quality of non-identity-specific image generation.
arXiv Detail & Related papers (2024-05-27T07:38:26Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - GANonymization: A GAN-based Face Anonymization Framework for Preserving
Emotional Expressions [43.017036538109274]
GANonymization is a novel face anonymization framework with facial expression-preserving abilities.
Our approach is based on a high-level representation of a face, which is synthesized into an anonymized version based on a generative adversarial network (GAN)
arXiv Detail & Related papers (2023-05-03T14:22:48Z) - Fantômas: Understanding Face Anonymization Reversibility [3.18294468240512]
Face images are a rich source of information that can be used to identify individuals and infer private information about them.
To mitigate this privacy risk, anonymizations employ transformations on clear images to obfuscate sensitive information.
Reversing anonymized images to resemble their real input represents the strongest indicator for flawed anonymization.
arXiv Detail & Related papers (2022-10-19T15:28:52Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
This paper studies a novel privacy-preserving anonymization problem for pedestrian images.
It preserves personal identity information (PII) for authorized models and prevents PII from being recognized by third parties.
We propose a joint learning reversible anonymization framework, which can reversibly generate full-body anonymous images.
arXiv Detail & Related papers (2022-07-24T07:04:16Z) - Face Anonymization by Manipulating Decoupled Identity Representation [5.26916168336451]
We propose a novel approach which protects identity information of facial images from leakage with slightest modification.
Specifically, we disentangle identity representation from other facial attributes leveraging the power of generative adversarial networks.
We evaulate the disentangle ability of our model, and propose an effective method for identity anonymization, namely Anonymous Identity Generation (AIG)
arXiv Detail & Related papers (2021-05-24T07:39:54Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.