Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems
- URL: http://arxiv.org/abs/2311.08924v1
- Date: Wed, 15 Nov 2023 12:55:28 GMT
- Title: Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems
- Authors: Alessandro Civolani, Vittoria Stanzione, Maria Luisa Chiofalo, Jorge
Yago Malo
- Abstract summary: We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of noise assisted transport in quantum systems is essential in a
wide range of applications from near-term NISQ devices to models for quantum
biology. Here, we study a generalised XXZ model in the presence of stochastic
collision noise, which allows to describe environments beyond the standard
Markovian formulation. Our analysis through the study of the local
magnetization, the inverse participation ratio (IPR) or its generalisation, the
Inverse Ergodicity Ratio (IER), showed clear regimes where the transport rate
and coherence time can be controlled by the dissipation in a consistent manner.
In addition, when considering several excitations, we characterize the
interplay between collisions and system interactions identifying regimes in
which transport is counterintuitively enhanced when increasing the collision
rate, even in the case of initially separated excitations. These results
constitute an example of the essential building blocks for the understanding of
quantum transport in structured noisy and warm disordered environments.
Related papers
- From Stochastic Hamiltonian to Quantum Simulation: Exploring Memory Effects in Exciton Dynamics [0.0]
We use Hamiltonian propagators to design quantum circuits that simulate exciton transport.
We identify a regime of "memory-assisted" quantum transport where time-correlated fluctuations allow the system to reach higher efficiency.
arXiv Detail & Related papers (2024-04-09T12:38:14Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Non-Markovianity between site-pairs in FMO complex using discrete-time
quantum jump model [3.0715281567279153]
We show the presence of higher non-Markovian memory effects in specific site-pairs when internal structures and environmental effects are in favour of faster transport.
Our study leans towards the connection between non-Markovianity in quantum jumps with the enhancement of transport efficiency.
arXiv Detail & Related papers (2022-09-02T12:49:09Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - A many-body approach to transport in quantum systems: From the transient
regime to the stationary state [0.0]
We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems.
Within this formalism, one can treat, on the same formulae, inter-particle interactions, external drives and/or footings, and coupling to baths with a continuum set of degrees of freedom.
arXiv Detail & Related papers (2022-01-07T19:16:40Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Stochastic collision model approach to transport phenomena in quantum
networks [0.0]
Noise-assisted transport phenomena highlight the interplay between environmental effects and quantum coherence in achieving maximal efficiency.
We introduce a new approach that combines an effective quantum microscopic description with a classical microscopic one.
Our approach shows how to meaningfully formulate questions, and provide answers, on important open issues such as the properties of optimal noise and the emergence of the network structure as a result of an evolutionary process.
arXiv Detail & Related papers (2020-10-12T11:43:43Z) - Effects of disorder and interactions on environment assisted quantum
transport [0.0]
We show a surprising situation where the particle current grows with increasing disorder, even without dephasing.
We show that repulsive interactions are detrimental to ENAQT, and lead to an environment-hampered quantum transport.
arXiv Detail & Related papers (2020-05-09T15:19:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.