From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks
- URL: http://arxiv.org/abs/2210.11875v2
- Date: Thu, 23 Mar 2023 23:09:56 GMT
- Title: From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks
- Authors: Alexandre R. Coates, Brendon W. Lovett and Erik M Gauger
- Abstract summary: Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding energy transport in quantum systems is crucial for an
understanding of light-harvesting in nature, and for the creation of new
quantum technologies. Open quantum systems theory has been successfully applied
to predict the existence of environmental noise-assisted quantum transport
(ENAQT) as a widespread phenomenon occurring in biological and artificial
systems. That work has been primarily focused on several `canonical'
structures, from simple chains, rings and crystals of varying dimensions, to
well-studied light-harvesting complexes. Studying those particular systems has
produced specific assumptions about ENAQT, including the notion of a single,
ideal, range of environmental coupling rates that improve energy transport. In
this paper we show that a consistent subset of physically modelled transport
networks can have at least two ENAQT peaks in their steady state transport
efficiency.
Related papers
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Harnessing quantum emitter rings for efficient energy transport and
trapping [0.0]
We formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters.
We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge.
The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence.
arXiv Detail & Related papers (2023-09-20T14:56:51Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Coherent control of quantum topological states of light in Fock-state
lattices [21.686661584999964]
We implement experiments on topological states of quantized light in a superconducting circuit.
We construct one and two-dimensional Fock-state lattices where topological transport of zero-energy states, strain induced pseudo-Landau levels, valley Hall effect and Haldane chiral edge currents are demonstrated.
Our study extends the topological states of light to the quantum regime, bridges topological phases of condensed matter physics with circuit quantum electrodynamics, and offers a new freedom in controlling the quantum states of multiple resonators.
arXiv Detail & Related papers (2022-08-06T06:43:49Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - A many-body approach to transport in quantum systems: From the transient
regime to the stationary state [0.0]
We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems.
Within this formalism, one can treat, on the same formulae, inter-particle interactions, external drives and/or footings, and coupling to baths with a continuum set of degrees of freedom.
arXiv Detail & Related papers (2022-01-07T19:16:40Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.