Transformers in the Service of Description Logic-based Contexts
- URL: http://arxiv.org/abs/2311.08941v3
- Date: Fri, 26 Apr 2024 16:32:02 GMT
- Title: Transformers in the Service of Description Logic-based Contexts
- Authors: Angelos Poulis, Eleni Tsalapati, Manolis Koubarakis,
- Abstract summary: We construct the natural language dataset, DELTA$_D$, using the description logic language $mathcalALCQ$.
We investigate the reasoning ability of a supervised fine-tuned DeBERTa-based model and of two large language models (GPT-3.5, GPT-4) with few-shot prompting.
Our results demonstrate that the DeBERTa-based model can master the reasoning task and that the performance of GPTs can improve significantly even when a small number of samples is provided.
- Score: 2.8210912543324658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in transformer-based models have initiated research interests in investigating their ability to learn to perform reasoning tasks. However, most of the contexts used for this purpose are in practice very simple: generated from short (fragments of) first-order logic sentences with only a few logical operators and quantifiers. In this work, we construct the natural language dataset, DELTA$_D$, using the description logic language $\mathcal{ALCQ}$. DELTA$_D$ contains 384K examples, and increases in two dimensions: i) reasoning depth, and ii) linguistic complexity. In this way, we systematically investigate the reasoning ability of a supervised fine-tuned DeBERTa-based model and of two large language models (GPT-3.5, GPT-4) with few-shot prompting. Our results demonstrate that the DeBERTa-based model can master the reasoning task and that the performance of GPTs can improve significantly even when a small number of samples is provided (9 shots). We open-source our code and datasets.
Related papers
- Transformer-based Language Models for Reasoning in the Description Logic ALCQ [2.8210912543324658]
We construct the natural language dataset, DELTA$_D$, using the expressive description logic language $mathcalALCQ$.
We investigate the logical reasoning capabilities of a supervised fine-tuned DeBERTa-based model and two large language models.
We show that the DeBERTa-based model fine-tuned on our dataset can master the entailment checking task.
arXiv Detail & Related papers (2024-10-12T18:25:34Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text
Generation [102.20036684996248]
We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning.
We conduct experiments on two data-to-text generation tasks like WebNLG and LogicNLG.
arXiv Detail & Related papers (2022-12-16T17:36:23Z) - Neural Methods for Logical Reasoning Over Knowledge Graphs [14.941769519278745]
We focus on answering multi-hop logical queries on Knowledge Graphs (KGs)
Most previous works have been unable to create models that accept full First-Order Logical (FOL) queries.
We introduce a set of models that use Neural Networks to create one-point vector embeddings to answer the queries.
arXiv Detail & Related papers (2022-09-28T23:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.