Transformer-based Language Models for Reasoning in the Description Logic ALCQ
- URL: http://arxiv.org/abs/2410.09613v1
- Date: Sat, 12 Oct 2024 18:25:34 GMT
- Title: Transformer-based Language Models for Reasoning in the Description Logic ALCQ
- Authors: Angelos Poulis, Eleni Tsalapati, Manolis Koubarakis,
- Abstract summary: We construct the natural language dataset, DELTA$_D$, using the expressive description logic language $mathcalALCQ$.
We investigate the logical reasoning capabilities of a supervised fine-tuned DeBERTa-based model and two large language models.
We show that the DeBERTa-based model fine-tuned on our dataset can master the entailment checking task.
- Score: 2.8210912543324658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in transformer-based language models have sparked research into their logical reasoning capabilities. Most of the benchmarks used to evaluate these models are simple: generated from short (fragments of) first-order logic sentences with only a few logical operators and quantifiers. We construct the natural language dataset, DELTA$_D$, using the expressive description logic language $\mathcal{ALCQ}$. DELTA$_D$ comprises 384K examples and increases in two dimensions: i) reasoning depth, and ii) linguistic complexity. In this way, we systematically investigate the logical reasoning capabilities of a supervised fine-tuned DeBERTa-based model and two large language models (GPT-3.5, GPT-4) with few-shot prompting. We show that the DeBERTa-based model fine-tuned on our dataset can master the entailment checking task. Moreover, the performance of GPTs can improve significantly even when a small number of samples is provided (9 shots). We open-source our code and datasets.
Related papers
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Transformers in the Service of Description Logic-based Contexts [2.8210912543324658]
We construct the natural language dataset, DELTA$_D$, using the description logic language $mathcalALCQ$.
We investigate the reasoning ability of a supervised fine-tuned DeBERTa-based model and of two large language models (GPT-3.5, GPT-4) with few-shot prompting.
Our results demonstrate that the DeBERTa-based model can master the reasoning task and that the performance of GPTs can improve significantly even when a small number of samples is provided.
arXiv Detail & Related papers (2023-11-15T13:23:24Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning [25.496627355906966]
We develop three new logical reasoning datasets named "ReClor-plus", "LogiQA-plus" and "LogiQAv2-plus"
Experiments show that these simple augmentations greatly hinder the models' performance.
Applying logic-driven data augmentation for fine-tuning and prompting can enhance generalisation in both discriminative and generative models.
arXiv Detail & Related papers (2023-10-13T22:29:15Z) - Empower Nested Boolean Logic via Self-Supervised Curriculum Learning [67.46052028752327]
We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested logic.
To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method textitCurriculum Logical Reasoning (textscClr)
arXiv Detail & Related papers (2023-10-09T06:54:02Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text
Generation [102.20036684996248]
We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning.
We conduct experiments on two data-to-text generation tasks like WebNLG and LogicNLG.
arXiv Detail & Related papers (2022-12-16T17:36:23Z) - PLOG: Table-to-Logic Pretraining for Logical Table-to-Text Generation [44.78200830757109]
We propose a PLOG (Pretrained Logical Form Generator) framework to improve the generation fidelity.
PLOG is first pretrained on a table-to-logic-form generation task, then finetuned on downstream table-to-text tasks.
PLOG can learn logical inference from table-logic pairs much more definitely than from table-text pairs.
arXiv Detail & Related papers (2022-05-25T11:55:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.