論文の概要: A Multimodal Dataset of 21,412 Recorded Nights for Sleep and Respiratory
Research
- arxiv url: http://arxiv.org/abs/2311.08979v1
- Date: Wed, 15 Nov 2023 14:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 15:43:14.304910
- Title: A Multimodal Dataset of 21,412 Recorded Nights for Sleep and Respiratory
Research
- Title(参考訳): 21,412日のマルチモーダルデータセットによる睡眠・呼吸研究
- Authors: Alon Diament (1), Maria Gorodetski (1), Adam Jankelow (1), Ayya Keshet
(2), Tal Shor (1), Daphna Weissglas-Volkov (1), Hagai Rossman (1) and Eran
Segal (2) ((1) Pheno.AI, Tel-Aviv, Israel, (2) Weizmann Institute of Science,
Rehovot, Israel)
- Abstract要約: 本研究は、FDAが承認したWatchPAT-300デバイスを用いて、在宅睡眠時無呼吸テストから得られた、新しいリッチデータセットを紹介する。
データセットは、センサーからの生のマルチチャネル時系列、注釈付き睡眠イベント、計算された要約統計の3つのレベルで構成されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel, rich dataset obtained from home sleep apnea
tests using the FDA-approved WatchPAT-300 device, collected from 7,077
participants over 21,412 nights. The dataset comprises three levels of sleep
data: raw multi-channel time-series from sensors, annotated sleep events, and
computed summary statistics, which include 447 features related to sleep
architecture, sleep apnea, and heart rate variability (HRV). We present
reference values for Apnea/Hypopnea Index (AHI), sleep efficiency, Wake After
Sleep Onset (WASO), and HRV sample entropy, stratified by age and sex.
Moreover, we demonstrate that the dataset improves the predictive capability
for various health related traits, including body composition, bone density,
blood sugar levels and cardiovascular health. These results illustrate the
dataset's potential to advance sleep research, personalized healthcare, and
machine learning applications in biomedicine.
- Abstract(参考訳): 本研究では,fdaが承認したwatchpat-300デバイスを用いた在宅睡眠時無呼吸テストから得られた,21,412夜の7,077名の参加者から得られた新しいリッチデータセットを提案する。
データセットは、センサーからの生のマルチチャネル時系列、注釈付き睡眠イベント、および計算された要約統計の3つのレベルの睡眠データから成り、睡眠アーキテクチャ、睡眠時無呼吸、心拍変動(hrv)に関連する447の特徴を含む。
ahi(apnea/hypopnea index)、睡眠効率(sleep efficiency)、waso(wake after sleep onset)、hrvサンプルエントロピー(hrv sample entropy)の基準値について検討した。
さらに,本データセットは, 体組成, 骨密度, 血糖値, 心血管健康など, 種々の健康関連特性の予測能力を向上させることを実証した。
これらの結果は、睡眠研究、パーソナライズされた医療、およびバイオメディシンにおける機械学習応用を進めるためのデータセットの可能性を示している。
関連論文リスト
- MobileNetV2: A lightweight classification model for home-based sleep apnea screening [3.463585190363689]
本研究は、心電図(ECG)と呼吸信号から抽出した特徴を早期OSAスクリーニングに利用した、新しい軽量ニューラルネットワークモデルを提案する。
ECG信号は睡眠段階を予測するための特徴スペクトログラムを生成するのに使用され、呼吸信号は睡眠関連呼吸異常を検出するために用いられる。
これらの予測を統合することで、AHI(apnea-hypopnea index)を精度良く算出し、OSAの正確な診断を容易にする。
論文 参考訳(メタデータ) (2024-12-28T01:37:25Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - What Radio Waves Tell Us about Sleep [34.690382091650314]
本研究では、睡眠中の人から反射される電波からの睡眠と夜間呼吸を受動的にモニタリングする高度な機械学習アルゴリズムを開発した。
睡眠時無呼吸(AUROC=0.88)を検知し,睡眠時無呼吸を検知した。
このモデルは、睡眠段階と、神経、精神医学、循環器、免疫疾患を含む様々な疾患の間の情報的相互作用を明らかにする。
論文 参考訳(メタデータ) (2024-05-20T02:41:21Z) - A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence [0.0]
本研究は,近年の文献を包括的かつ体系的にレビューし,睡眠研究における様々なアプローチとその成果を分析することを目的としている。
このレビューでは、最初183の論文が異なる雑誌から選ばれ、そのうち80の論文が2016年から2023年まで、明示的なレビューのために登録された。
脳波は、睡眠ステージングや障害研究に最もよく用いられる身体パラメータである。
論文 参考訳(メタデータ) (2024-05-17T11:09:33Z) - Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
本研究の目的は,就寝時の頻繁な動きによる睡眠不足など,エビデンスに基づく評価を提供する機械学習ベースの睡眠評価モデルを構築することである。
睡眠音イベントの抽出,VAEを用いた潜時表現の抽出,GMMによるクラスタリング,主観的睡眠評価のためのLSTMトレーニングは94.8%の精度で睡眠満足度を識別した。
論文 参考訳(メタデータ) (2024-04-16T05:56:41Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
高速フーリエ変換は、脳波記録の30秒間のエポックに応用され、局所的な時間周波数情報を提供する。
深層畳み込みLSTMニューラルネットワークは睡眠段階分類のために訓練されている。
コード評価の結果、精度は86.43、精度は77.76、リコールは93,32, F1スコアは89.12、最終誤差は0.09だった。
論文 参考訳(メタデータ) (2021-07-07T15:38:47Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。