論文の概要: Can MusicGen Create Training Data for MIR Tasks?
- arxiv url: http://arxiv.org/abs/2311.09094v1
- Date: Wed, 15 Nov 2023 16:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 15:03:45.935909
- Title: Can MusicGen Create Training Data for MIR Tasks?
- Title(参考訳): MusicGenはMIRタスクのためのトレーニングデータを作成することができるか?
- Authors: Nadine Kroher, Helena Cuesta, Aggelos Pikrakis
- Abstract要約: 我々は,AIに基づく生成音楽システムを用いて音楽情報検索タスクの学習データを生成するという,より広範な概念について検討している。
我々は50000以上のジャンルを規定したテキスト記述を構築し、5つのジャンルをカバーした楽曲の抜粋を作成した。
予備的な結果は,提案モデルが実世界の音楽録音を一般化した人工音楽トラックからジャンル特有な特徴を学習できることを示唆している。
- 参考スコア(独自算出の注目度): 3.8980564330208662
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We are investigating the broader concept of using AI-based generative music
systems to generate training data for Music Information Retrieval (MIR) tasks.
To kick off this line of work, we ran an initial experiment in which we trained
a genre classifier on a fully artificial music dataset created with MusicGen.
We constructed over 50 000 genre- conditioned textual descriptions and
generated a collection of music excerpts that covers five musical genres. Our
preliminary results show that the proposed model can learn genre-specific
characteristics from artificial music tracks that generalise well to real-world
music recordings.
- Abstract(参考訳): 我々は,音楽情報検索(MIR)タスクのトレーニングデータを生成するために,AIベースの生成音楽システムを使用するというより広い概念について検討している。
この一連の研究を始めるために、私たちはmusicgenで作成した完全に人工的な音楽データセットでジャンル分類器をトレーニングする最初の実験を行いました。
5万以上のジャンル条件付きテキスト記述を作成し,5つのジャンルをカバーする音楽抜粋集を作成した。
提案手法は,実世界の録音によく適用できる人工的な楽曲からジャンル特有の特徴を学習できることを示す。
関連論文リスト
- Audio Processing using Pattern Recognition for Music Genre Classification [0.0]
本研究は,GTZANデータセットを用いた音楽ジャンル分類における機械学習手法の適用について検討する。
パーソナライズされた音楽レコメンデーションの需要が高まる中、私たちは、ブルース、クラシック、ジャズ、ヒップホップ、カントリーという5つのジャンルの分類に注力しました。
ANNモデルは最高の性能を示し、検証精度は92.44%に達した。
論文 参考訳(メタデータ) (2024-10-19T05:44:05Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
手動のジャンル分類の限界は、より高度なシステムの必要性を強調している。
従来の機械学習技術はジャンル分類の可能性を示してきたが、音楽データの完全な複雑さを捉えられなかった。
本研究では,視覚スペクトログラムを入力として用いる新しいアプローチを提案し,Residual Neural Network(ResNet)とGated Recurrent Unit(GRU)の強みを組み合わせたハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-07-20T11:10:06Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Evaluating Deep Music Generation Methods Using Data Augmentation [13.72212417973239]
我々は,アルゴリズムによって生成された楽曲のサンプルを評価するための,均質で客観的な枠組みに焦点をあてる。
生成した楽曲の楽譜評価は行わず,感情や気分やテーマに関する意味のある情報が含まれているかを探る。
論文 参考訳(メタデータ) (2021-12-31T20:35:46Z) - Personalized Popular Music Generation Using Imitation and Structure [1.971709238332434]
そこで本研究では,特定の例のシード曲から構造,メロディ,和音,バススタイルを捉え,模倣できる統計的機械学習モデルを提案する。
10曲のポップソングによる評価は,我々の新しい表現と手法が高品質なスタイリスティック音楽を作り出すことができることを示している。
論文 参考訳(メタデータ) (2021-05-10T23:43:00Z) - Artificial Musical Intelligence: A Survey [51.477064918121336]
音楽は、機械学習と人工知能研究の領域としてますます広まりつつある。
この記事では、音楽知能の定義を提供し、その構成成分の分類を導入し、その追求に耐えうる幅広いAI手法を調査します。
論文 参考訳(メタデータ) (2020-06-17T04:46:32Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。