論文の概要: When Is Multilinguality a Curse? Language Modeling for 250 High- and
Low-Resource Languages
- arxiv url: http://arxiv.org/abs/2311.09205v1
- Date: Wed, 15 Nov 2023 18:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 14:27:03.228550
- Title: When Is Multilinguality a Curse? Language Modeling for 250 High- and
Low-Resource Languages
- Title(参考訳): 複数言語性はいつ呪われたのか?
250の高低リソース言語のための言語モデリング
- Authors: Tyler A. Chang, Catherine Arnett, Zhuowen Tu, Benjamin K. Bergen
- Abstract要約: 私たちは250以上の言語で1万以上のモノリンガルおよび多言語言語モデルを事前訓練しています。
モデレーションでは、多言語データを追加することで、低リソース言語モデリングのパフォーマンスが向上する。
データセットのサイズが大きくなるにつれて、マルチリンガルデータの追加は、低リソース言語と高リソース言語の両方のパフォーマンスを損なうようになる。
- 参考スコア(独自算出の注目度): 25.52470575274251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual language models are widely used to extend NLP systems to
low-resource languages. However, concrete evidence for the effects of
multilinguality on language modeling performance in individual languages
remains scarce. Here, we pre-train over 10,000 monolingual and multilingual
language models for over 250 languages, including multiple language families
that are under-studied in NLP. We assess how language modeling performance in
each language varies as a function of (1) monolingual dataset size, (2) added
multilingual dataset size, (3) linguistic similarity of the added languages,
and (4) model size (up to 45M parameters). We find that in moderation, adding
multilingual data improves low-resource language modeling performance, similar
to increasing low-resource dataset sizes by up to 33%. Improvements depend on
the syntactic similarity of the added multilingual data, with marginal
additional effects of vocabulary overlap. However, high-resource languages
consistently perform worse in multilingual pre-training scenarios. As dataset
sizes increase, adding multilingual data begins to hurt performance for both
low-resource and high-resource languages, likely due to limited model capacity
(the "curse of multilinguality"). These results suggest that massively
multilingual pre-training may not be optimal for any languages involved, but
that more targeted models can significantly improve performance.
- Abstract(参考訳): マルチ言語モデルは低リソース言語へのNLPシステムの拡張に広く利用されている。
しかし,言語モデリング性能に対する多言語性の影響を示す具体的な証拠は乏しい。
ここでは,NLPで未研究の複数の言語ファミリーを含む,250以上の言語を対象とした1万以上の単言語および多言語言語モデルを事前訓練する。
我々は,(1)単言語データセットサイズ,(2)多言語データセットサイズ,(3)追加言語の言語的類似度,(4)モデルサイズ(最大45Mパラメータ)の関数として,各言語の言語モデリング性能がどのように変化するかを評価する。
モデレーションでは、マルチリンガルデータを追加することで、低リソースの言語モデリングのパフォーマンスが向上し、低リソースのデータセットサイズが最大33%向上する。
改良は、追加の多言語データの構文的類似性に依存し、語彙重なりの限界的な追加効果がある。
しかし、高リソース言語は、多言語事前学習シナリオにおいて一貫して悪化する。
データセットのサイズが大きくなるにつれて、多言語データの追加は低リソース言語と高リソース言語の両方のパフォーマンスを損なうようになる。
これらの結果から,多言語事前学習はどの言語にも適さないが,よりターゲットを絞ったモデルによって性能が著しく向上する可能性が示唆された。
関連論文リスト
- Targeted Multilingual Adaptation for Low-resource Language Families [17.212424929235624]
我々は、事前学習されたモデルを言語族に適応させるためのベストプラクティスについて研究する。
適応モデルは単言語および多言語ベースラインを大きく上回る。
低リソース言語は、高リソース言語のパフォーマンスをほとんど犠牲にすることなく、トレーニング中に積極的にアップサンプリングできる。
論文 参考訳(メタデータ) (2024-05-20T23:38:06Z) - LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
本研究は、主に英語で訓練された大規模な言語モデルを低リソース言語に適応させることにより、代替的な解決策を探求する。
継続訓練,命令細調整,タスク特化細調整,語彙拡張など,さまざまな戦略を評価する。
その結果、継続学習は、難易度スコアに反映されるような言語理解を向上し、タスク固有のチューニングは、一般的に下流タスクのパフォーマンスを向上することを示した。
論文 参考訳(メタデータ) (2024-05-13T13:41:59Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Multilingual Word Embeddings for Low-Resource Languages using Anchors
and a Chain of Related Languages [54.832599498774464]
我々は,言語連鎖に基づく新しいアプローチにより,多言語単語埋め込み(MWE)を構築することを提案する。
リソースの豊富なソースから始めて、ターゲットに到達するまで各言語をチェーンに順次追加することで、MWEを一度に1つの言語で構築します。
本手法は,4つの低リソース(5Mトークン)と4つの中程度の低リソース(50M)ターゲット言語を含む4つの言語ファミリーを対象としたバイリンガルレキシコン誘導法について検討した。
論文 参考訳(メタデータ) (2023-11-21T09:59:29Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
大量の生データに基づく事前学習言語モデルに基づく伝達学習は,NLPの最先端性能に到達するための新しい規範となっている。
このようなモデルは、目に見えない言語に対して複数の方法で振る舞うことを示す。
論文 参考訳(メタデータ) (2020-10-24T10:15:03Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
これまでの研究は、bitextで微調整することで機械翻訳システムを作成できることを実証してきた。
多言語翻訳モデルは多言語微調整により作成可能であることを示す。
事前訓練されたモデルは、性能を損なうことなく、追加の言語を組み込むように拡張できることを実証する。
論文 参考訳(メタデータ) (2020-08-02T05:36:55Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。