When Is Multilinguality a Curse? Language Modeling for 250 High- and
Low-Resource Languages
- URL: http://arxiv.org/abs/2311.09205v1
- Date: Wed, 15 Nov 2023 18:47:42 GMT
- Title: When Is Multilinguality a Curse? Language Modeling for 250 High- and
Low-Resource Languages
- Authors: Tyler A. Chang, Catherine Arnett, Zhuowen Tu, Benjamin K. Bergen
- Abstract summary: We pre-train over 10,000 monolingual and multilingual language models for over 250 languages.
We find that in moderation, adding multilingual data improves low-resource language modeling performance.
As dataset sizes increase, adding multilingual data begins to hurt performance for both low-resource and high-resource languages.
- Score: 25.52470575274251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual language models are widely used to extend NLP systems to
low-resource languages. However, concrete evidence for the effects of
multilinguality on language modeling performance in individual languages
remains scarce. Here, we pre-train over 10,000 monolingual and multilingual
language models for over 250 languages, including multiple language families
that are under-studied in NLP. We assess how language modeling performance in
each language varies as a function of (1) monolingual dataset size, (2) added
multilingual dataset size, (3) linguistic similarity of the added languages,
and (4) model size (up to 45M parameters). We find that in moderation, adding
multilingual data improves low-resource language modeling performance, similar
to increasing low-resource dataset sizes by up to 33%. Improvements depend on
the syntactic similarity of the added multilingual data, with marginal
additional effects of vocabulary overlap. However, high-resource languages
consistently perform worse in multilingual pre-training scenarios. As dataset
sizes increase, adding multilingual data begins to hurt performance for both
low-resource and high-resource languages, likely due to limited model capacity
(the "curse of multilinguality"). These results suggest that massively
multilingual pre-training may not be optimal for any languages involved, but
that more targeted models can significantly improve performance.
Related papers
- Targeted Multilingual Adaptation for Low-resource Language Families [17.212424929235624]
We study best practices for adapting a pre-trained model to a language family.
Our adapted models significantly outperform mono- and multilingual baselines.
Low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages.
arXiv Detail & Related papers (2024-05-20T23:38:06Z) - LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
This study explores an alternative solution by adapting large language models, primarily trained on English, to low-resource languages.
We assess various strategies, including continual training, instruction fine-tuning, task-specific fine-tuning, and vocabulary extension.
The results show that continual training improves language comprehension, as reflected in perplexity scores, and task-specific tuning generally enhances performance of downstream tasks.
arXiv Detail & Related papers (2024-05-13T13:41:59Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - Multilingual Word Embeddings for Low-Resource Languages using Anchors
and a Chain of Related Languages [54.832599498774464]
We propose to build multilingual word embeddings (MWEs) via a novel language chain-based approach.
We build MWEs one language at a time by starting from the resource rich source and sequentially adding each language in the chain till we reach the target.
We evaluate our method on bilingual lexicon induction for 4 language families, involving 4 very low-resource (5M tokens) and 4 moderately low-resource (50M) target languages.
arXiv Detail & Related papers (2023-11-21T09:59:29Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language.
Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language.
We find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance.
arXiv Detail & Related papers (2023-01-18T03:57:53Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP.
We show that such models behave in multiple ways on unseen languages.
arXiv Detail & Related papers (2020-10-24T10:15:03Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.