論文の概要: Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- arxiv url: http://arxiv.org/abs/2311.09210v2
- Date: Thu, 03 Oct 2024 04:35:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 17:53:05.549672
- Title: Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- Title(参考訳): Chain-of-Note:Retrieval-Augmented Language Modelにおけるロバスト性向上
- Authors: Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, Dong Yu,
- Abstract要約: CoN(Chain-of-Noting)は、ノイズや無関係な文書、未知のシナリオの処理において、ALMの堅牢性を改善することを目的とした、新しいアプローチである。
CoNは、完全にノイズの多い検索された文書が与えられるEMスコアの+7.9と、トレーニング済みの知識範囲外にあるリアルタイム質問に対する拒絶率+10.5の平均的な改善を実現している。
- 参考スコア(独自算出の注目度): 54.55088169443828
- License:
- Abstract: Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
- Abstract(参考訳): Retrieval-augmented Language Model (RALMs) は、大規模な言語モデルの能力、特に外部の知識源を活用することで幻覚を減らし、大幅に進歩した言語モデルである。
しかし、検索された情報の信頼性は必ずしも保証されない。
無関係なデータの検索は、誤った応答をもたらし、たとえクエリに対処する十分な情報を持っているとしても、モデルが固有の知識を見落としてしまう可能性がある。
さらに、標準的なALMは、内在的にも回収的にも十分な知識を持っているかどうかを判断し、正確な答えを提供するのに苦労することが多い。
知識が不足している状況では、これらのシステムは、その答えが達成不可能なときに、理想的に"未知"で応答すべきである。
これらの課題に対応するために、我々は、ノイズ、無関係な文書、未知のシナリオの処理において、ALMの堅牢性を改善することを目的とした新しいアプローチであるChain-of-Noting(CoN)を紹介した。
CoNの中核となる考え方は、取得した文書のシーケンシャルな読解ノートを生成し、与えられた質問に対するそれらの関連性を徹底的に評価し、この情報を統合して最終回答を定式化することである。
我々はChatGPTを用いてCoNのトレーニングデータを作成し、その後LLaMa-2 7Bモデルでトレーニングを行った。
オープンドメインQAベンチマークによる実験の結果,CoNを実装したRALMは標準のRALMよりも有意に優れていた。
特に、CoNは、完全にノイズの多い検索された文書が与えられたEMスコアの+7.9と、事前学習された知識の範囲外にあるリアルタイム質問に対する拒絶率+10.5の平均的な改善を達成している。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEvalは、コンテキストシナリオにおける大規模言語モデル(LLM)の忠実度を評価するためのベンチマークである。
FaithEvalは4.9Kの高品質な問題で構成され、厳格な4段階のコンテキスト構築と検証フレームワークを通じて検証されている。
論文 参考訳(メタデータ) (2024-09-30T06:27:53Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - Enhancing Robustness of Retrieval-Augmented Language Models with In-Context Learning [5.053086684547045]
本研究では、ALMの推論能力を高めるために、文脈内学習に基づくアプローチを導入する。
我々のアプローチは、追加の微調整を必要とせずに、解決不可能なシナリオと矛盾するシナリオを特定する精度を高める。
論文 参考訳(メタデータ) (2024-08-08T12:42:43Z) - RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing [0.2302001830524133]
本稿では,検索言語モデル (RALM) に関する総合的な概要の欠如について論じる。
本稿では、Retrievers、Language Models、Augmentationsなど、ALMの本質的なコンポーネントについて論じる。
RALMは、翻訳や対話システムから知識集約アプリケーションまで、様々なタスクにおいて有用性を示す。
論文 参考訳(メタデータ) (2024-04-30T13:14:51Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Empirical evaluation of Uncertainty Quantification in
Retrieval-Augmented Language Models for Science [0.0]
本研究では,科学知識を事前学習・検索データとして組み込んだ場合,不確実性スコアがどう変化するかを検討する。
我々は,検索データが予測生成に自信を持つ傾向にあるため,科学的知識に精通した既存のALMを観察する。
また、ALMは予測を過信しており、正確な予測よりも不正確な予測を確実にしていることもわかりました。
論文 参考訳(メタデータ) (2023-11-15T20:42:11Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for
Knowledge-intensive Question Answering [17.672572064705445]
CoT(Chain-of-Thought)を備えた大規模言語モデル(LLM)は、様々な下流タスクにおいて顕著な推論能力を示している。
我々は、外部知識との相互作用を通じてCoTの推論トレースを検証・修正する、KD-CoT(Knowled-Driven Chain-of-Thought)というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-25T09:23:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。