Investigating Hallucinations in Pruned Large Language Models for Abstractive Summarization
- URL: http://arxiv.org/abs/2311.09335v3
- Date: Thu, 24 Oct 2024 21:40:00 GMT
- Title: Investigating Hallucinations in Pruned Large Language Models for Abstractive Summarization
- Authors: George Chrysostomou, Zhixue Zhao, Miles Williams, Nikolaos Aletras,
- Abstract summary: Pruning is a technique that reduces model size by removing redundant weights, enabling more efficient sparse inference.
This paper provides an empirical study across five summarization datasets, two state-of-the-art pruning methods, and five instruction-tuned LLMs.
Surprisingly, we find that hallucinations are less prevalent from pruned LLMs than the original models.
- Score: 37.55557353462219
- License:
- Abstract: Despite the remarkable performance of generative large language models (LLMs) on abstractive summarization, they face two significant challenges: their considerable size and tendency to hallucinate. Hallucinations are concerning because they erode reliability and raise safety issues. Pruning is a technique that reduces model size by removing redundant weights, enabling more efficient sparse inference. Pruned models yield downstream task performance comparable to the original, making them ideal alternatives when operating on a limited budget. However, the effect that pruning has upon hallucinations in abstractive summarization with LLMs has yet to be explored. In this paper, we provide an extensive empirical study across five summarization datasets, two state-of-the-art pruning methods, and five instruction-tuned LLMs. Surprisingly, we find that hallucinations are less prevalent from pruned LLMs than the original models. Our analysis suggests that pruned models tend to depend more on the source document for summary generation. This leads to a higher lexical overlap between the generated summary and the source document, which could be a reason for the reduction in hallucination risk.
Related papers
- From Single to Multi: How LLMs Hallucinate in Multi-Document Summarization [6.37435726278524]
We investigate how hallucinations manifest in large language models (LLMs) when summarizing topic-specific information from multiple documents.
On average, up to 75% of the content in LLM-generated summary is hallucinated, with hallucinations more likely to occur towards the end of the summaries.
To understand the characteristics of these hallucinations, we manually evaluate 700+ insights and find that most errors stem from either failing to follow instructions or producing overly generic insights.
arXiv Detail & Related papers (2024-10-17T18:38:53Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused [44.37155553647802]
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks.
They occasionally yield content that factually inaccurate or discordant with the expected output.
Recent works have investigated contrastive decoding between the original model and an amateur model with induced hallucination.
We introduce a novel contrastive decoding framework termed LOL (LOwer Layer Matters)
arXiv Detail & Related papers (2024-08-16T14:23:59Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
Large language models are known to hallucinate when faced with unfamiliar queries.
We find that unfamiliar examples in the models' finetuning data are crucial in shaping these errors.
Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations.
arXiv Detail & Related papers (2024-03-08T18:28:13Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - Hallucination Reduction in Long Input Text Summarization [2.6745438139282283]
Hallucination in text summarization poses significant obstacles to the accuracy and reliability of the generated summaries.
We have incorporated the techniques of data filtering and joint entity and summary generation (JAENS) in the fine-tuning of the Longformer-Decoder (LED) model.
Our experiments show that the fine-tuned LED model performs well in generating the paper abstract.
arXiv Detail & Related papers (2023-09-28T18:22:16Z) - Detecting and Preventing Hallucinations in Large Vision Language Models [4.7264116948935975]
M-HalDetect is the first multi-modal hallucination detection dataset for detailed image descriptions.
We train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling.
We find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively.
arXiv Detail & Related papers (2023-08-11T21:35:20Z) - Don't Say What You Don't Know: Improving the Consistency of Abstractive
Summarization by Constraining Beam Search [54.286450484332505]
We analyze the connection between hallucinations and training data, and find evidence that models hallucinate because they train on target summaries that are unsupported by the source.
We present PINOCCHIO, a new decoding method that improves the consistency of a transformer-based abstractive summarizer by constraining beam search to avoid hallucinations.
arXiv Detail & Related papers (2022-03-16T07:13:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.