A Novel Approach to Eliminating Hallucinations in Large Language Model-Assisted Causal Discovery
- URL: http://arxiv.org/abs/2411.12759v1
- Date: Sat, 16 Nov 2024 03:06:39 GMT
- Title: A Novel Approach to Eliminating Hallucinations in Large Language Model-Assisted Causal Discovery
- Authors: Grace Sng, Yanming Zhang, Klaus Mueller,
- Abstract summary: We show that hallucinations exist when using large language models (LLMs) in causal discovery.
We propose using Retrieval Augmented Generation (RAG) to reduce hallucinations when quality data is available.
- Score: 21.2023350773338
- License:
- Abstract: The increasing use of large language models (LLMs) in causal discovery as a substitute for human domain experts highlights the need for optimal model selection. This paper presents the first hallucination survey of popular LLMs for causal discovery. We show that hallucinations exist when using LLMs in causal discovery so the choice of LLM is important. We propose using Retrieval Augmented Generation (RAG) to reduce hallucinations when quality data is available. Additionally, we introduce a novel method employing multiple LLMs with an arbiter in a debate to audit edges in causal graphs, achieving a comparable reduction in hallucinations to RAG.
Related papers
- A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Exploring and Evaluating Hallucinations in LLM-Powered Code Generation [14.438161741833687]
Large Language Models (LLMs) produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misalign with factual knowledge.
Existing work mainly focuses on investing the hallucination in the domain of natural language generation.
We conduct a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations present in it.
We propose HalluCode, a benchmark for evaluating the performance of code LLMs in recognizing hallucinations.
arXiv Detail & Related papers (2024-04-01T07:31:45Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP)
LLMs are prone to hallucination, generating plausible yet nonfactual content.
This phenomenon raises significant concerns over the reliability of LLMs in real-world information retrieval systems.
arXiv Detail & Related papers (2023-11-09T09:25:37Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z) - Halo: Estimation and Reduction of Hallucinations in Open-Source Weak
Large Language Models [11.497989461290793]
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP)
Open-source LLMs with fewer parameters often suffer from severe hallucinations compared to their larger counterparts.
This paper focuses on measuring and reducing hallucinations in BLOOM 7B, a representative of such weaker open-source LLMs.
arXiv Detail & Related papers (2023-08-22T20:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.