Time-dependent Probabilistic Generative Models for Disease Progression
- URL: http://arxiv.org/abs/2311.09369v1
- Date: Wed, 15 Nov 2023 21:00:00 GMT
- Title: Time-dependent Probabilistic Generative Models for Disease Progression
- Authors: Onintze Zaballa, Aritz P\'erez, Elisa G\'omez-Inhiesto, Teresa
Acaiturri-Ayesta, Jose A. Lozano
- Abstract summary: We propose a Markovian generative model of treatments to model the irregular time intervals between medical events.
We use the Expectation-Maximization algorithm to learn the model, which is efficiently solved with a dynamic programming-based method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records contain valuable information for monitoring
patients' health trajectories over time. Disease progression models have been
developed to understand the underlying patterns and dynamics of diseases using
these data as sequences. However, analyzing temporal data from EHRs is
challenging due to the variability and irregularities present in medical
records. We propose a Markovian generative model of treatments developed to (i)
model the irregular time intervals between medical events; (ii) classify
treatments into subtypes based on the patient sequence of medical events and
the time intervals between them; and (iii) segment treatments into subsequences
of disease progression patterns. We assume that sequences have an associated
structure of latent variables: a latent class representing the different
subtypes of treatments; and a set of latent stages indicating the phase of
progression of the treatments. We use the Expectation-Maximization algorithm to
learn the model, which is efficiently solved with a dynamic programming-based
method. Various parametric models have been employed to model the time
intervals between medical events during the learning process, including the
geometric, exponential, and Weibull distributions. The results demonstrate the
effectiveness of our model in recovering the underlying model from data and
accurately modeling the irregular time intervals between medical actions.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Sequential Inference of Hospitalization Electronic Health Records Using Probabilistic Models [3.2988476179015005]
In this work we design a probabilistic unsupervised model for multiple arbitrary-length sequences contained in hospitalization Electronic Health Record (EHR) data.
The model uses a latent variable structure and captures complex relationships between medications, diagnoses, laboratory tests, neurological assessments, and medications.
Inference algorithms are derived that use partial data to infer properties of the complete sequences, including their length and presence of specific values.
arXiv Detail & Related papers (2024-03-27T21:06:26Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion models for Imputation (CSDI) is a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data.
CSDI improves by 40-70% over existing probabilistic imputation methods on popular performance metrics.
In addition, C reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods.
arXiv Detail & Related papers (2021-07-07T22:20:24Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.