COPER: Continuous Patient State Perceiver
- URL: http://arxiv.org/abs/2208.03196v1
- Date: Fri, 5 Aug 2022 14:32:57 GMT
- Title: COPER: Continuous Patient State Perceiver
- Authors: Vinod Kumar Chauhan, Anshul Thakur, Odhran O'Donoghue and David A.
Clifton
- Abstract summary: We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
- Score: 13.735956129637945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In electronic health records (EHRs), irregular time-series (ITS) occur
naturally due to patient health dynamics, reflected by irregular hospital
visits, diseases/conditions and the necessity to measure different vitals signs
at each visit etc. ITS present challenges in training machine learning
algorithms which mostly are built on assumption of coherent fixed dimensional
feature space. In this paper, we propose a novel COntinuous patient state
PERceiver model, called COPER, to cope with ITS in EHRs. COPER uses Perceiver
model and the concept of neural ordinary differential equations (ODEs) to learn
the continuous time dynamics of patient state, i.e., continuity of input space
and continuity of output space. The neural ODEs help COPER to generate regular
time-series to feed to Perceiver model which has the capability to handle
multi-modality large-scale inputs. To evaluate the performance of the proposed
model, we use in-hospital mortality prediction task on MIMIC-III dataset and
carefully design experiments to study irregularity. The results are compared
with the baselines which prove the efficacy of the proposed model.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
We propose a novel deep-learning model that learns the underlying patient dynamics to generate personalized values conditioning on an individual's demographic characteristics and treatments.
Our proposed model, IGNITE, utilise a conditional dual-variational autoencoder augmented with dual-stage attention to generate missing values for an individual.
We show that IGNITE outperforms state-of-the-art approaches in missing data reconstruction and task prediction.
arXiv Detail & Related papers (2024-01-09T07:57:21Z) - Time-dependent Probabilistic Generative Models for Disease Progression [0.0]
We propose a Markovian generative model of treatments to model the irregular time intervals between medical events.
We use the Expectation-Maximization algorithm to learn the model, which is efficiently solved with a dynamic programming-based method.
arXiv Detail & Related papers (2023-11-15T21:00:00Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.