論文の概要: GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production
- arxiv url: http://arxiv.org/abs/2311.09394v1
- Date: Wed, 15 Nov 2023 21:41:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 17:28:10.600422
- Title: GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production
- Title(参考訳): GWP-ASan:生産中のメモリセーフなバグのサンプリングに基づく検出
- Authors: Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco
Elver, Alexander Potapenko, Matt Morehouse, Vlad Tsyrklevich, Christian
Holler, Julian Lettner, David Kilzer, Lander Brandt
- Abstract要約: Heap-use-after-freeとheap-buffer-overflowのバグは、CやC++で記述されたアプリケーションのセキュリティ、信頼性、開発者の生産性の主要な問題である。
本稿では,この2種類のメモリセーフなバグを実運用環境でほぼゼロのオーバーヘッドで検出するツール群について述べる。
- 参考スコア(独自算出の注目度): 30.534320345970286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent advances in pre-production bug detection,
heap-use-after-free and heap-buffer-overflow bugs remain the primary problem
for security, reliability, and developer productivity for applications written
in C or C++, across all major software ecosystems. Memory-safe languages solve
this problem when they are used, but the existing code bases consisting of
billions of lines of C and C++ continue to grow, and we need additional bug
detection mechanisms.
This paper describes a family of tools that detect these two classes of
memory-safety bugs, while running in production, at near-zero overhead. These
tools combine page-granular guarded allocation and low-rate sampling. In other
words, we added an "if" statement to a 36-year-old idea and made it work at
scale.
We describe the basic algorithm, several of its variants and implementations,
and the results of multi-year deployments across mobile, desktop, and server
applications.
- Abstract(参考訳): 最近の本番前のバグ検出の進歩にもかかわらず、ヒープ-use-after-freeとヒープ-buffer-overflowのバグは、cやc++で書かれたアプリケーションのセキュリティ、信頼性、開発者の生産性に関する主要な問題であり続けている。
メモリセーフな言語は使用時にこの問題を解決するが、CとC++の数十億行からなる既存のコードベースは成長を続けており、さらなるバグ検出機構が必要である。
本稿では,この2種類のメモリセーフなバグを実運用環境でほぼゼロのオーバーヘッドで検出するツール群について述べる。
これらのツールはページグラニュラーガードと低レートサンプリングを組み合わせたものだ。
言い換えれば、36歳のアイデアに“if”ステートメントを追加して、大規模に動作させたのです。
本稿では,基本的なアルゴリズム,いくつかの変種と実装,モバイル,デスクトップ,サーバアプリケーション間の複数年展開の結果について述べる。
関連論文リスト
- KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution [59.20933707301566]
大規模言語モデル(LLM)は、ますます現実的なソフトウェア工学(SE)タスクにおいて一貫して改善されている。
現実世界のソフトウェアスタックでは、Linuxカーネルのような基本的なシステムソフトウェアの開発にSEの取り組みが費やされています。
このような大規模システムレベルのソフトウェアを開発する際にMLモデルが有用かどうかを評価するため、kGymとkBenchを紹介する。
論文 参考訳(メタデータ) (2024-07-02T21:44:22Z) - Automated Repair of AI Code with Large Language Models and Formal Verification [4.9975496263385875]
次世代のAIシステムは強力な安全保証を必要とする。
本稿では,ニューラルネットワークと関連するメモリ安全性特性のソフトウェア実装について述べる。
これらの脆弱性を検出し、大きな言語モデルの助けを借りて自動的に修復します。
論文 参考訳(メタデータ) (2024-05-14T11:52:56Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Large Language Models of Code Fail at Completing Code with Potential
Bugs [30.80172644795715]
リアルタイムコード提案に触発されたバグコード補完問題について検討する。
潜在的なバグの存在は、高性能なCode-LLMの生成性能を著しく低下させる。
論文 参考訳(メタデータ) (2023-06-06T06:35:27Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - What to Prioritize? Natural Language Processing for the Development of a
Modern Bug Tracking Solution in Hardware Development [0.0]
我々は、異なる教師付き機械学習アルゴリズムを用いて、バグレポートの修正時間、リスク、複雑さを予測するアプローチを提案する。
評価の結果,Universal Sentenceモデルによって生成されたテキスト埋め込みの組み合わせは,他の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-09-28T15:55:10Z) - Generating Bug-Fixes Using Pretrained Transformers [11.012132897417592]
実世界のgithubからマイニングしたjavaメソッドのバグの検出と修正を学ぶ,データ駆動型プログラム修復手法を導入する。
ソースコードプログラムの事前トレーニングは,スクラッチからの教師ありトレーニングに比べて,33%のパッチ数を改善することを示す。
我々は,標準精度評価基準を非削除および削除のみの修正に洗練し,我々の最良モデルが従来よりも75%多くの非削除修正を生成することを示す。
論文 参考訳(メタデータ) (2021-04-16T05:27:04Z) - Predicting Vulnerability In Large Codebases With Deep Code
Representation [6.357681017646283]
ソフトウェアエンジニアは様々なモジュールのコードを書きます。
過去に(異なるモジュールで)修正された同様の問題やバグも、本番コードで再び導入される傾向にある。
ソースコードから生成した抽象構文木(AST)の深部表現とアクティブフィードバックループを用いた,AIに基づく新しいシステムを開発した。
論文 参考訳(メタデータ) (2020-04-24T13:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。