Predicting Spine Geometry and Scoliosis from DXA Scans
- URL: http://arxiv.org/abs/2311.09424v1
- Date: Wed, 15 Nov 2023 22:49:08 GMT
- Title: Predicting Spine Geometry and Scoliosis from DXA Scans
- Authors: Amir Jamaludin, Timor Kadir, Emma Clark, Andrew Zisserman
- Abstract summary: We first train a neural network to predict the middle spine curve in the scan, and then use an integral-based method to determine the curvature along the spine curve.
We show that the maximum curvature can be used as a scoring function for ordering the severity of spinal deformation.
- Score: 49.68543422441626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our objective in this paper is to estimate spine curvature in DXA scans. To
this end we first train a neural network to predict the middle spine curve in
the scan, and then use an integral-based method to determine the curvature
along the spine curve. We use the curvature to compare to the standard angle
scoliosis measure obtained using the DXA Scoliosis Method (DSM). The
performance improves over the prior work of Jamaludin et al. 2018. We show that
the maximum curvature can be used as a scoring function for ordering the
severity of spinal deformation.
Related papers
- SpineFM: Leveraging Foundation Models for Automatic Spine X-ray Segmentation [0.0]
This paper introduces SpineFM, a novel pipeline that achieves state-of-the-art performance in the automatic segmentation and identification of vertebral bodies.
We achieved outstanding results on two publicly available spine X-Ray datasets, with successful identification of 97.8% and 99.6% of annotated vertebrae.
arXiv Detail & Related papers (2024-11-01T02:51:21Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - B-Spine: Learning B-Spline Curve Representation for Robust and
Interpretable Spinal Curvature Estimation [50.208310028625284]
We propose B-Spine, a novel deep learning pipeline to learn B-spline curve representation of the spine.
We estimate the Cobb angles for spinal curvature estimation from low-quality X-ray images.
arXiv Detail & Related papers (2023-10-14T15:34:57Z) - Scoliosis Detection using Deep Neural Network [0.0]
Scoliosis is a sideways curvature of the spine that most often is diagnosed among young teenagers.
Current gold standard to detect and estimate scoliosis is to manually examine the spinal anterior-posterior X-ray images.
Deep learning has shown amazing achievements in automatic spinal curvature estimation.
arXiv Detail & Related papers (2022-10-31T12:52:04Z) - Direct Estimation of Spinal Cobb Angles by Structured Multi-Output
Regression [42.67503464183464]
The Cobb angle that quantitatively evaluates the spinal curvature plays an important role in the scoliosis diagnosis and treatment.
We formulate the estimation of the Cobb angles from spinal X-rays as a multi-output regression task.
Our method achieves the direct estimation of Cobb angles with high accuracy, which indicates its great potential in clinical use.
arXiv Detail & Related papers (2020-12-23T12:33:46Z) - Deep Modeling of Growth Trajectories for Longitudinal Prediction of
Missing Infant Cortical Surfaces [58.780482825156035]
We will introduce a method for longitudinal prediction of cortical surfaces using a spatial graph convolutional neural network (GCNN)
The proposed method is designed to model the cortical growth trajectories and jointly predict inner and outer curved surfaces at multiple time points.
We will demonstrate with experimental results that our method is capable of capturing the nonlinearity oftemporal cortical growth patterns.
arXiv Detail & Related papers (2020-09-06T18:46:04Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Analysis of Scoliosis From Spinal X-Ray Images [17.8260780895433]
Measurement of scoliosis requires labeling and identification of vertebrae in the spine.
Scoliosis is a congenital disease in which the spine is deformed from its normal shape.
We propose an end-to-end segmentation model that provides a fully automatic and reliable segmentation of the vertebrae associated with scoliosis measurement.
arXiv Detail & Related papers (2020-04-15T05:36:28Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.